Scripted CFD simula-

tions and postprocessing
in Fluent and ParaVIEW

Manual

about doing automated CFD simulations with
Fluent

and scripted postprocessing with

ParaVIEW

Version 1.0 - “Rocky Road"

JOHANNES KEPLER
UNIVERSITY LINZ

Prepared by
Lukas
Muttenthaler

Prepared at

Institute of
Machine Design and
Hydraulic Drives

Supervisor #1
Rudolf
Scheidl

Supervisor #2
Bernhard
Manhartsgruber

June 2017

JOHANNES KEPLER
UNIVERSITY LINZ
AltenbergerstraBe 69
4040 Linz, Osterreich

www.jku.at
DVR 0093696

Table of Contents

Table of Contents

Preface

1 Introduction

1.1 Methodology of CFD simulations
1.2 Scripting of CFD simulations L.
1.3 Programs and Versions Lo

2 Using Windows Shell

3 Using ANSYS Workbench

3.1 Basics of ANSYS Workbench and IronPython
3.2 TronPython in the ANSYS Workbench Environment
3.2.1 Syntax
3.2.2 Variables.
3.2.3 Mathematical Basic Operations
3.2.4 Conditionals
3.2.5 ITterations
3.2.6 Formatted Output
3.2.7 eval- and exec-Statements L
3.2.8 Directory and File Operations
3.2.9 Useful Built-In Functions and Modules
3.3 Scripting in ANSYS Workbencho o
3.3.1 Executing Commands and Scripts with the GUT
3.3.2 Shell Commands and Script Execution
4 Using ANSYS Fluent
4.1 Basics of ANSYS Fluent and Scheme
4.2 Scheme in the ANSYS Fluent Environment
4.2.1 Syntax
4.2.2 Variables
4.2.3 Mathematical Basic Operations
4.2.4 Lists e e e e
4.2.,5 Conditionals
4.2.6 Iterations
4.2.7 Formatted Output
4.2.8 eval-Statements

4.2.9 Aliases
4.3 Scripting in ANSYS Fluent
4.3.1 Executing Commands and Scripts with the GUT
4.3.2 Shell Commands and Script Execution

5 Using ParaView
5.1 Basics of ParaView and Python
5.2 Python in the ParaView Environment
5.3 Scripting in ParaViewo
5.3.1 Recording Scripts with the GUL
5.3.2 Executing Commands and Scripts with the GUT
5.3.3 Shell Commands and Script Execution

Bibliography
Appendix

A Example to do a scripted Simulation and Analysis
A.1 Script for ANSYS Workbench L.
A.2 Scripts for ANSYS Fluent
A.2.1 Script of Important Parameters
A.2.2 Script of Fluent Commands
A.3 Script for ParaViewo

IT

Preface

This document is about performing Computational Fluid Dynamics (CFD) simulations in Flu-
ent as a stand-alone program and using Fluent via Workbench. Fluent as well as Workbench
are programs/components of ANSYS. Results of CFD simulations have to be analysed, whereby
ParaVIEW is a possible choice for doing analysis and postprocessing. Both steps, the simula-
tion and the analysis can be done with the Graphical User Interfaces of the programs, but it is
also possible to do this with text-based scripts.

The main reason of using scripts for the application of the programs, is the more flexible usage.
Additional, equal or similar simulations and analysis run more than one time. So text-based
scripts and the Application Programming Interfaces (API) allows parameter studies and op-
timisations by external communication with various programming languages and programs.
Therefore, setting parameters of CFD simulation cases by using MATLAB, C/C++, Python
and so on is possible.

On the following pages script-based CFD is explained. However there are no explanations
about physical or mathematical fundamentals of fluid dynamics or the correct procedure of the
various settings of computational tools to get correct results.

The motivation of this publication concerning the text-based usage, is the missing documenta-
tion and the high number of programming languages of ANSYS APIs. The ambition of creating
this manual is to ease other engineers and researchers the advanced utilisation of simulating
and analysing fluid dynamic cases and to come in exchange with simulation experts and their
experiences.

After an introduction, the manual contains three main issues:

e Defining and running a simulation setup and saving the results in two different ways:

— Fluent stand-alone
— Fluent via Workbench

o Analysing the results with ParaVIEW

This document was created during doctoral program at the Institute of Machine Design and
Hydraulic Drives at the Austrian Johannes Kepler University in Linz. So I would like to express
my gratitude and thanks to my supervisors and my scientific advisers o.Univ.-Prof. Dipl.-Ing
Dr. Rudolf Scheidl and a.Univ.-Prof. Dipl.-Ing Dr. Bernhard Manhartsgruber for their advice,
patience and support. Furthermore for their useful comments and remarks.

A steady improvement of this manual can only be reached by feedback, that’s why it would
be wonderful to get opinions, views and ideas of different ways of doing CFD simulations and
analysing the results. Therefore, please contact the author via ResearchGate or E-Mail.

Chapter 1

Introduction

1.1 Methodology of CFD simulations

The procedure of simulating a fluid flow can be divided into four steps. An overview can be
seen in Figure 1.1.

Simulation Steps

DesignModeller, SpaceClaim,
BladeModeller

| ICEM, ANSYS Meshing, TurboGrid |

| CFX, Fluent, Polyflow, FENSAP-ICE,... |

I‘-I«I«I I

| CFD Post, Fluent |

Figure 1.1: Process of CFD simulations

Foremost the geometry of the CFD simulation part is necessary. Therefore, the geometry and
physical boundaries have to be created or imported from a Computer Aided Design (CAD)
software. One of the most decisive points of the first step is the reduction of the geometry to
a simple simulating part. Not required details may not included in the geometry model. The
less details the geometry contains the easier is the second step. Thus, the geometry should be
as simple as possible, but as complicated as necessary. Many details lead to a high number of
cells and to a long simulation time.

In the second step the volume of the created geometry gets divided into discrete cells. The
generation of a good and useful mesh may be quite complicated. The quality of the mesh is very
important and significant to the convergence of the simulation and the quality of the result.

After generating a good mesh, the setup of a simulation can be specified. These setups contain
the definitions of the boundary conditions and the settings of the physical model, discretisation
methods, materials and others.

At the end of a typical simulation procedure, the analysis of results and the determination of
the result quality is necessary.

Sometimes it is necessary to reiterate some of the steps, if the simulation is not stable, conver-
gence can not be achieved, the result is not plausible or the result differs from measurements,
experiences or other calculations. CFD simulations should never be a stand-alone technology
but rather in combination with experiments and analytical or other calculations. The optimum
is in the intersection of the three circles as seen in Figure 1.2. [1,2]

CED Experience

[Analytical or

(Numerical Model Emplrical Madel}

Figure 1.2: Methodology of fluid dynamics

1.2 Scripting of CFD simulations

Most commercial tools as Fluent, CFX and Star-CCM+ offers a Graphical User Interface (GUI)
to interact with the software. Additional, it is possible to use Text-based User Interfaces (TUI).
Otherwise open-source programs like openFOAM and SU2 are often text-based. [3-6]

TUIs open a wide range of possibilities, because you manipulate the setup, control the simula-
tion, read and write variables and add new functionalities:

o Performing parameter studies.

o Automating several steps if wanted.

o Defining simulations without GUIs and evading limitations caused by them.
o Adding new functionalities.

« Linking CFD programs to other routines and using the calculating core.

1.3 Programs and Versions

The instructions in the next chapters were applied to the following program releases:
o ANSYS: Release 17.1
o ParaVIEW: Release 5.3.0

Chapter 2
Using Windows Shell

The Windows shell is the interface of Windows operating systems and allows to communicate
with it. Files can be manipulated, created or deleted, as well as directory operations can be
done. To open the Command line, one has to click the Start button and type cmd in the Search
line. (Don’t forget to press Enter.)

Normally, Windows shell starts at the user directory and the commands are not case sensitive.
A ready shell is shown by the > symbol. To get information of available commands help can

be used. help command shows information about the specific command and command /7
displays the options.

Some useful and relevant commands for Windows shell are composed in Table 2.1.

Argument Process
cd directory Changes current directory to directory.
cd.. Move current directory one steps upwards.
cd\ Move current directory to C:\
mkdir directory Create the specified directory.
rmdir directory Delete the specified directory.
dir Shows all files in the current directory.
rename dirl dir2 Rename the specified directory.
rename file.ext file2.ext Rename the specified file.
file.exe Run the specified executable.
copy file.ext file2.ext Copy the specified file.
del file.ext Delete the specified file.
exit Close the Command line.

Table 2.1: Some relevant commands for Windows Command line

For executing shell commands more than once, commands can be written to files. Command
scripts for the shell can be created and edited with any editor and stored as .bat or .sh file.
Following this, the .bat or .sh file can be executed (also by double-clicking on them). These
files offers a wide range of possibilities. Examples are running CFD simulations and executing
different tasks, files and directories can be manipulated, process management can be done, the
operating system can be monitored and configured.

It may be necessary to run the shell as administrator, otherwise it is possible, that the operating
system asks for administrator rights. Otherwise Windows asks, if the user wants to allow the
program to make changes to the computer. So, if one call them with the shell, the shell has
to be opened with administrator rights or the .bat file can be also executed with administrator
rights.

A whole list of shell instructions can be found in the Command-Line Reference of Microsoft
Technet. For other operating systems exists several other websites, manuals and registers with
a command overview like the A-Z Index of the Bash Command Line for Linux.

Chapter 3
Using ANSYS Workbench

3.1 Basics of ANSYS Workbench and IronPython

ANSYS Workbench is a framework of different ANSYS programs (they are called components
in Workbench). Each component can be used as stand-alone program as program linked in the
Workbench Environment. Linking the components with Workbench by using the GUI, allows
processes like updating the whole project, using of parameters (in a limited extent, because not
all settings, properties or values are parameterisable in ANSYS), bidirectionally communicating
with internal (ANSYS components) and external (third-party software) interfaces, including
multiphysics simulations. For this reason, the Workbench offers possibilities of an extended
and advanced utilisation, but there are still limitations:

» Not all settings, properties or values are parameterisable.
« External Interfaces are only available for specific programs/programming languages.
e Restriction in variability.

IronPython, a Python implementation in C#, is the language of the API. This implementation
can use .NET-Assemblies. It is an interpreted, object-oriented language with an easy and clear
syntax and is ideal for rapid prototyping. [7]

The Workbench API of ANSYS Release 17.1 is based on IronPython 2.7.0.40. For this reason
scripting in Workbench uses an object-based approach. Properties of objects have values, mod-
ified by modules.

There are numerous books and guides about (Iron-)Python programming. The Python Doc-
umentation and IronPython Documentation gives an explanation of many versions of (Iron-
)Python and online Python interpreters help to evaluate small little scripts. But there are little
differences, by using different interpreters.

3.2 IronPython in the ANSYS Workbench Environment

Workbench projects consist of systems and components and their linkages, whereby systems
are predefined collections of components, which are often used together. [§]

The >>> symbol shows a ready command prompt. An overview of using Text User Interface
commands for Workbench is given on the next pages. [9-11]

7

3.2.1 Syntax

In the syntax you may use lowercase (a-z) and uppercase (A-Z) letters, numbers (0-9) and the
special characters for namings: _

To achieve a well readable style and a general valid syntax for naming variables, modules,
classes and so on, hints and tricks can be found in the internet. [12]

Comments starts with # and end at end of line.

3.2.2 Variables

A function in python uses a local scope of variables. Variables of this scope are defined in the
function or in the parameter list. If no local variable can be found, a global variable is wanted.
If a global variable also can not be found, the program exits with an error.

Listing 3.1: Definition of variables

Listing 3.2: More datatypes in Python

There exist even more datatypes in Python such as tuples, sets, dictionaries and others. Have
a look at the different documentations.

3.2.3 Mathematical Basic Operations

Some basic operations can be seen in the following lines.

Listing 3.3: Mathematical Basic Operations

3.2.4 Conditionals

Statements often have to perform different actions depending on conditional statements or
depending on the value of a variable. So the program flow changes and depends on this states.

Listing 3.4: Relational and equivalence expressions

Listing 3.5: Boolean expressions

Listing 3.6: if-else-Statements

The else statement is not mandatory.

3.2.5 Iterations

In (Iron-)Python two kinds of loops are available.

for-Loops

For loops are used to iterate over a sequence of various elements. This sequence could be a list,
string or tuple.

Listing 3.7: for-Loop

while-Loops

The while loop repeats as long as a specified expression is true.

Symbol Meaning

0 Conversion will be filled with zeros.
- Conversion is left adjusted.
+ Conversion is always preceded by a sign character.

No flag (default) means padding with leading blanks.

Table 3.1: Flags for string modulo operator placeholders

Listing 3.8: while-Loop

To exit a for or while loop a break statement can be used. To skip the current and start the
next loop with the next value a continue statement can be used.

3.2.6 Formatted Output

In Python there are two ways of generating formatted outputs. The older way is the method
with a string modulo operator . The better way is, to use format .

String Modulo Operator

There are three indispensable syntax parts . The first part is a string with a placeholder, that
specifies the format of the inserted argument. The string modulo operator is necessary and last
the arguments (with their values) are needful.

The general syntax of the placeholder: _

The width specifies the total width of the number and means the total number of digits including
the decimal point. As a number consists of less characters than specified, the output is filled
with leading blanks by default.

Precision specifies the number after the decimal point filled with zeros on the right side.
Flags specify alignment, padding and preceding characters and are described in Table 3.1.
The syntax to configure a special type is in Table 3.2.

11

Symbol Meaning
d, i Signed decimal integer
u Unsigned decimal integer
f, F Floating-point number.
e, E Floating point number in exponential format. ("e”,”E”)
S String (any object converted by (str())
% "% character

Table 3.2: Types for string modulo operator placeholders

Symbol Meaning
0 Conversion will be filled with zeros.
- Conversion is only preceded by a negative character.
+ Conversion is always preceded by a sign character.
No specification (default) means padding with leading blanks.
< Field is left aligned (default) in the available space.
- Field is centered.
> Field is right aligned.
, Thousands seperators are used.

Table 3.3: Options for format placeholders

>>> "Bananas: /%5d, Price:%8.2f" % (243, 957.4)
’Bananas: 243, Price: 957 .40°

>>> "Percentage Sign: %% " % O

>Percentage Sign: % °’

Listing 3.9: Examples for formatted output with string modulo operator

format

The newer method for formatted outputs is the format way. The structure is similar to the
string modulo operator way. A string s with placeholder is needful. The format method is
called with arguments that should replace the placeholders:

s.format (xargs, **xkwargs)

The placeholders are surrounded by curly braces. Inside the round braces the first number
specifies the position of the argument in the argument list. The second part of the placeholder
is the format code, which is similar to the format code of the string modulo operator showed
in Table 3.2. The characters which specifies the argument type are the same than above, but
u and i are not used. Options, which are described in Table 3.3, modifies the format of the
output.

>>> "{0:6d}, {0:06d}, {0:+6d}, {0:-6d}, {0:<6d}, {0:°6d}".format (-66)

¢ -66, -00066, -66, -66, -66 X -66 ¢

>>> "{0:6.3f}, {0:06.3f}, {0:6.3F}, {0:6.3e}, {0:6.3E}".format(-11.22)
’-11.220, -11.220, -11.220, -1.122e+01, -1.122E+01°’

>>>"abc {0:s} abc {0:15s} abc {0:>15s} abc".format("xyz")
>abc xyz abc xyz abc xyz abc’

Listing 3.10: Examples for formatted output with format method

12

3.2.7 eval- and exec-Statements

exec executes a (dynamically) created statement or program and accepts statements like
import , class, def, for, assignments and programs but it ignores return values.

eval evalutes only single expressions and give back the return value. The above examples are
accepted from exec but not from eval .

>>> a = 2

>>> b = eval("a + 3") #Evaluate the expression and assign to b

>>> print (b)

5

>>> exec("b = a + 2") #Execute the assign statement

>>> print (b)

5

Listing 3.11: Comparison of eval and exec

These both functions are useful in combination with format to generate a string with file path
and name and load or store data or to do parameter studies or set values of variables.

3.2.8 Directory and File Operations

To do file operations the sys module is necessary. The module can be imported with import sys
command. In order to read data from file or write data to file, the file has to be opened with
the ‘open command and is closed after the usage with close .

>>> import sys #Imports the module

>>> #Read from file

>>> fileIdl = open("datal.txt","r") #0Open file in read mode and gives back
file object

>>> data = fileIdl.read() #Read all lines

>>> fileIdl.close() #Close file

>>> #Write to file

>>> fileId2 = open("data2.txt","w") #0Open file in write mode and gives back
file object

>>> fileId2.write("First line!\n") #Write string to file

>>> fileId2.close() #Close file

Listing 3.12: Simple example for editing file data

There are even more possibilities to edit the data of files. The os, subprocess and shutil
modules enables to interact with the operating system and other processes and to use high-level
file and directory manipulation. Have a look at the online documentations of (Iron-)Python.

3.2.9 Useful Built-In Functions and Modules

Help information concerning an object help(object) is available. dir(object) will give
a list of current scope names, globals() returns a dictionary of global symbol table and

locals(object) returns a dictionary of local symbol table.

There are also some mathematical basic operations as min(iterable) , max(zterable) ,
abs (number) , pow(z, y) and so on.

13

3.3 Scripting in ANSYS Workbench

3.3.1 Executing Commands and Scripts with the GUI

Python scripts can be executed by selecting File > Scripting > Run Script File and choos-
ing a .py file. Single (or even multiple) commands can be executed by using File > Script-
ing > Open Command Window and executing the intended commands. A representative
example of the interaction between operating systems, scripts and ANSYS Workbench is shown
in Figure 3.1. [13]

Shell S

Workbench
mainConfig.py ==t

Scheme-Flos are paEies
En fhe com ponenk

parametersForall. sem

simulationSetups.scm

simulationSetupB.scm

simulationSetupC.scm

Figure 3.1: Using scripts in ANSYS Workbench environment

3.3.2 Shell Commands and Script Execution

The last section was was related to using Python commands in the Workbench GUI. It is

also possible to run Workbench in batch or interactive mode and execute a Python script via

Windows/Linux shell. The Windows shell commands are described in Chapter 2.

> :: It is possible to call the executable with an absolute path

> "<Installation Path>/<Version>/Framework/bin/<Platform>/RunWB2.exe" -B -R
"<Any Path>/<Any Script>.py"

> :: Another way is to change directory first and then call the executable

> cd "<Working Directory>"

> "RunWB2.exe" -B -R "<Any Path>/<Any Script>.py"

Listing 3.13: Executing a Python script in ANSYS Workbench via Windows shell

The Working Directory specifies the current directory, where the relative paths of the process
refers to. The Installation Path is needful to specify the absolute path to the Workbench
executable and the Version folder is similar to "v171” to specify the folder of Version 17.1 and
Platform similar to "win64”. There are also some arguments to specify the process, whereby
the arguments can be combined.

14

Argument Process
-B Batch Mode: Console Window is shown and GUI not.
-1 Interactive Mode: GUI is shown and Console Window not.
-B -1 Batch and Interactive Mode: Console Window and GUI are both displayed.
-R <Specified File > Executes the specified script.

Table 3.4: Specifying shell execution

15

Chapter 4
Using ANSYS Fluent

4.1 Basics of ANSYS Fluent and Scheme

ANSYS Fluent is a software to run numerical simulations in the field of fluid mechanics. The
first commercial release of Fluent was in 1983 by the US company Creare Inc. The growth
of Fluent led to a separate company with the same name. In 2006 Fluent was bought by the
Computer-Aided Engineering (CAE) software company ANSYS. [14]

Similar to other CAE software, Fluent allows communication via interface. This API uses
Scheme, which is a dialect of Lisp. Scheme was introduced in 1970 by Guy L. Steele and
Gerald Jay Sussmann and it is a functional programming language. [15]

4.2 Scheme in the ANSYS Fluent Environment

In the command prompt the > symbol shows a ready prompt. Pressing Enter shows the cur-

rent menu and the actual possible commands. So press Enter on the empty prompt shows the
commands on the top level: adapt/, define/, display/, exit, close-fluent, file/,
mesh/, parallel/, plot/, report/, solve/, surface/, switch-to-meshing-mode, turbo/,
views/

The backslash shows that a submenu is available. [16]

Pressing Enter in a submenu shows again the available commands. Going back to the superior
command is possible by typing q or quit at the prompt.

An overview of using Text User Interface commands for Fluent is given on the next pages. [15—
19]

4.2.1 Syntax

Scheme, as a Lisp dialect, uses the following basic syntax:
(commandl argumentl argument2 ...)

Listing 4.1: Scheme syntax

Command and variable names are not case sensitive (a-z), have to start with a letter and could
contain numbers (0-9) and the special characters: + - * / <> =7 . : 4 $! -~ ~
Comments starts with ; and end at end of line.

16

4.2.2 Variables
Basics

Common to other programming languages, Scheme knows local and global variables. A defini-
tion of a variable types is not necessary. Values of variables can be of each type. For global

definitions of variables use define , whereby for redefinitions set! should be used. Otherwise
the new definiton leads to a new local variable. let defines variables as local.

Listing 4.2: Definition and redefinition of global variables

Listing 4.3: Definition of local variables

The value of a variable can be seen by -

The standard Scheme environment in Fluent contains all variables and functions that are de-
fined from Fluent or from the user. To check, if a variable is bounded and assigned in this
environment.

Listing 4.4: More datatypes in Scheme

RP-Variables in Fluent

All RP-Variables are model-related variables and are defined in the case-Files and the variables
can be read and written with:

Listing 4.5: RP-Variables

CX-Variables in Fluent

All CX-Variables are related to the Fluent environment and variables can be read and written
with:

17

Listing 4.6: CX-Variables

4.2.3 Mathematical Basic Operations

Some mathematical basic operations can be seen in the following lines. Some operations can
be used with more than two arguments.

Listing 4.7: Mathematical operations

4.2.4 Lists

A List is a fundamental type in Scheme and is a sequence of objects separated by whitespace
and enclosed in parentheses.

Listing 4.8: List Operations

4.2.5 Conditionals

To allow the execution of specific expressions or not, conditional expressions are necessary and
boolean values are used. In Scheme these values are represented as #t and #f. To determine
how a value relates to another, relational and equivalence expressions are needful:

Listing 4.9: Relational and equivalence expressions

18

Listing 4.10: Boolean expressions

Listing 4.11: if-else-Statements

Sometimes more than one conditional have to be checked. A good example is a piecewise
defined function with multiple intervals. The sytnax of a cond-Statement looks like:

Listing 4.12: cond-Statements

To enable a control flow in a multiway branch, the value of a variable defines the flow:

Listing 4.13: case-Statements

4.2.6 Iterations

Here is a short summary of looping in Fluent Scheme is given:

do-Loops
The sytnax of a do-Loop is:

Listing 4.14: do-Loops

19

Argument Meaning
~a Next argument (any object) is printed as if by display.
~8 Next argument (any object) is printed as if by write.
~d Next argument is an integer number.
~f Next argument is a floating-point number.
\n Newline character
~% Newline character
\” " character

Table 4.1: Format directives and special characters for format-Statements

for-each-Loops vs. map-Function

In Scheme it is possible to do a function for each element of a list. There are two different ways
to do the same job, with slight differences. Using the map command stores every return value
of all calls. For-each-Loops do not store the return values of each call. The structure of the
commands looks as:

Listing 4.15: for-each-Loop vs. map-Loop

4.2.7 Formatted Output

To create strings and insert variables, the format procedure is used. The format command is
like in C. Instead the % sign the ~ introduces a format directive and the next character

specifies the kind of format. Table 4.1 shows the meanings of the specifiers.

Listing 4.16: format-Statements

4.2.8 eval-Statements

The eval-Statement takes the Scheme objects and evaluates it. For using this eval command it
is necessary to specify the environment.

Listing 4.17: eval-Statements

In Fluent it is also possible to evaluate a text string. The Fluent Scheme command
- in combination with the format command - enables the creation
and execution of commands via text string, which includes the values of variables.

Listing 4.18: ti-menu-load-string-Statements

4.2.9 Aliases

In Fluent command aliases can be defined, to execute commands by typing a (shorter) abbre-
viation/command.

Listing 4.19: alias-Statements

21

Argument Process
2d Use two dimensional, single precision solver.
2ddp Use two dimensional, double precision solver.
3d Use three dimensional, single precision solver.
3ddp Usethree dimensional, double precision solver.
-help Show list of available options.
-i file.jou Execute specified file (.jou, .scm) in Fluent.
-tz Specify number of local parallel processes z.
-gpgpu=zc Specify number GPGPUs z per machine.
-hidden | Run Fluent hidden and noninteractively. (Windows only)
-g Run Fluent without GUI and without graphics.
-gr Run Fluent without graphics.
-gu Run Fluent without GUI.
-cc Open Fluent in Classic Color Scheme.

Table 4.2: Specifying shell execution options of Fluent

4.3 Scripting in ANSYS Fluent

4.3.1 Executing Commands and Scripts with the GUI

Scheme scripts can be executed by selecting File > Read > Scheme and choosing a .scm
file. Commands can also be executed by using the command prompt.

4.3.2 Shell Commands and Script Execution

CFD simulations in Fluent can be done by shell commands in different operating systems.
General commands of Windows and Linux shells are documented on the internet and a short
explanation of Windows shell commands are available in Chapter 2.

It is possible to call the executable and show help functionality
cd "<Installation Path>/<Version>/fluent/ntbin/<Platform>"

fluent .exe ::Using no arguments
fluent .exe 3ddp -hidden -i predefinedCommands.scm ::Using some arguments

Listing 4.20: Executing a Scheme script in ANSYS Fluent via Windows shell

vV V V V

The most important possible arguments are shown in Table 4.2. It is possible to specify
properties for solver settings, visualization, parallel processing and input files.

22

Chapter 5

Using ParaView

5.1 Basics of ParaView and Python

ParaView is an open source application for visualisation and data analysis. Developers are San-
dia National Laboratory, Kitware Inc. and Los Alamos National Laboratory and the developing
started in 2000. It is able to use ParaView on supercomputers and supports distributed com-
puting. It uses a Python APT and the functionality can be expanded by C++ classes. [20—-22]

Python was introduced in 1991 and the API is based on the version 2.7.3. It is a interpreted
language and it is very easy to read.

5.2 Python in the ParaView Environment

The Python commands and the usage of them is the same as in Chapter 3.2. The slight
differences of the two different versions can be read in the documentations. [10, 23]

5.3 Scripting in ParaView

5.3.1 Recording Scripts with the GUI

A good opportunity is to trace scripts. This means that the interaction with the GUI can be
recorded (Tools > Start Trace). In ParaView this recording leads to the same coding as a
human would program the same functionality. So an analysis can be done with GUI which is
really simple and then the traced code can be reused.

5.3.2 Executing Commands and Scripts with the GUI

The Python interface can be found by selecting Tools > Python Shell in the GUI. The
Python interface allows to type in Python commands and execute them and it is also possible
to run Python scripts in this interface. Another possibility is to start the PvPython application.
Only the interface without the GUI and a window with the visualisation are shown.

23

5.3.3 Shell Commands and Script Execution
PvPython can also be started from shell of the operating system. Links for commands of
Windows and Linux shell can be found in Chapter 2.

> :: It is possible to call the executable and run a Python script
> "<Installation Path>/<Version>/Framework/bin/pvpython.exe" "<Any Path>/<
Any Script>.py"

Listing 5.1: Executing a Python script in PvPython via Windows shell

24

Bibliography

[10]

[11]
[12]

[13]

Stefan Pirker. Numerical Methods in Fluid Dynamics, Lecture Notes. Johannes Kepler
University, March 2017.

Andre Bakker. Applied Computational Fluid Dynamics. FLUENT, 2002-2006.
Homepage ANSYS. http://www.ansys.com, June 2017.

Homepage STAR-CCM+. http://mdx.plm.automation.siemens.com, June 2017.
Homepage OpenFOAM. http://www.openfoam.com, June 2017.

Homepage SU2. http://su2.stanford.edu, June 2017.

Thomas Theis. Einstieq in Python. Rheinwerk, Bonn, 4 edition, 2016.

ANSYS, Canonsburg. ANSYS AIM and Workbench Scripting Guide, 17.1 edition, April
2016.

IronPython Community. IronPython Documentation. http://ironpython.net/
documentation/dotnet, June 2017.

Python Software Foundation. Python 2.7.4 Documentation. https://docs.python.org/
release/2.7.4, June 2017.

Bodenseo. Python course. http://www.python-course.eu/index.php, June 2017.

Anthony Reid. Python Naming Conventions. https://visualgit.readthedocs.io/en/
latest/pages/naming convention.html, June 2017.

ANSYS, Canonsburg. ANSYS Fluent in ANSYS Workbench Users Guide, 17.1 edition,
April 2016.

University of Kentucky Center for Computational Sciences. A Brief History of Fluent.
https://www.ccs.uky.edu/UserSupport/SoftwareResources/Fluen/, May 2017.

R. Kent Dybvig. The Scheme Programming Language. The MIT Press, 4 edition, 20009.
ANSYS, Canonsburg. ANSYS Fluent Users Guide, 17.1 edition, April 2016.

Mirko Javurek. Fluent Scheme Documentation. Johannes Kepler University, Linz, August
2015.

University of Illinois Computational Science and Engineering. ANSYS Fluent CEFD - Text
User Interface & Scheme for Automation. https://uiuc-cse.github.io/me498cm-fals/
lessons/fluent/handout-tui-scheme.pdf, October 2015.

ANSYS, Canonsburg. ANSYS Fluent Text Command List, 17.1 edition, April 2016.
Homepage ParaView. https://www.paraview.org, June 2017.

Utkarsh Ayachit. The ParaView Guide. Kitware Inc., Clifton Park, 5.0 edition, November
2016.

Kenneth Moreland. The ParaView Tutorial. Kitware Inc., Albuquerque, 5.2 edition,
November 2016.

Python Software Foundation. Python 2.7.3 Documentation. https://docs.python.org/
release/2.7.3, June 2017.

1

Appendix A

Example to do a scripted Simulation
and Analysis

The following scripts are based on the structure of Figure 3.1. The IronPython file which is
executed, does the looping and sends the setup and commands, which are specified in both
Scheme files. The parameters scheme file is executed first in Fluent. Then the remaining
commands are sent to Fluent. The case, the results and the residual histories are saved. The
results are opened and analysed with ParaView.

The following scripts assume that a Workbench Project (.wbpj) was created, the Analysis
System “Fluid Flow (Fluent)” was used, the Geometry was imported or created and the mesh
was generated. Naturally the way without Workbench can be used, but to demonstrate and
show the interaction between Workbench and Fluent the way with the Framework is displayed.

A.1 Script for ANSYS Workbench

Listing A.1: Workbench Commands (IronPython)

A.2 Scripts for ANSYS Fluent

A.2.1 Script of Important Parameters

Listing A.2: Setting Parameters in Fluent (Scheme)

A.2.2 Script of Fluent Commands

Listing A.3: Fluent specific and remaining Commands (Scheme)

A.3 Script for ParaView

Listing A.4: Postprocessing Commands for ParaView (Python)

View publication stats

