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1 Introduction

Point-wise deformation of mesh patches gives possibilities to changes shapes of an object, for ex-
ample in optimisation purposes. It also gives possibility for active flow control calculations by
pre-defined movement of patches that affect the flow while running a simulation.

This tutorial describes how to build a library that introduces new mesh boundary conditions
which give the user possibility to deform patches of a mesh according to a particular polynomial
function. With small changes this method can easily be used with other functions, either by hard
coding it into the library or by including some equation parser in the library. Finally the point-wise
deformation will be shown in action by deforming the sides of a cube. Active flow control will also
be introduced and implemented by allowing for periodic changes of patches where the patch returns
to its original position within a specified time limit. The icoDyMFoam solver is used as it deforms
the mesh while simultaneously running flow simulation.

Figure 1: The figures on the left show a mesh with out deformation. The figures on the right show an
example of point-wise deformation.
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2 Point-wise deformation

2.1 Getting started

The easiest way to start is to find a library that gives the most similar behaviour to what point-wise
deformation is expected to have. The library chosen here rotates patches around a defined axis by
defining velocity of each node. It can be found in:

$FOAM_SRC/fvMotionSolver/pointPatchFields/derived/angularOscillatingVelocity/

Let’s begin by copying it to our working directory:

cp -r $FOAM_SRC/fvMotionSolver/pointPatchFields/derived/angularOscillatingVelocity \
$FOAM_RUN/

and also copy the Make folder:

cp -r $FOAM_SRC/fvMotionSolver/Make $FOAM_RUN/angularOscillatingVelocity/

Clean up:

cd $FOAM_RUN/angularOscillatingVelocity
wclean
rm -r Make/linux*

It is recommended to rename files and folders in order to not get them mixed up with the original
library. Here the folder will be renamed libMyPolynomVelocity and the new library will be named
libMyPolynomVelocityPointPatchVectorField.

cd $FOAM_RUN
mv angularOscillatingVelocity libMyPolynomVelocity
cd libMyPolynomVelocity
mv angularOscillatingVelocityPointPatchVectorField.C \
libMyPolynomVelocityPointPatchVectorField.C

mv angularOscillatingVelocityPointPatchVectorField.H \
libMyPolynomVelocityPointPatchVectorField.H

Then it is necessary to edit the .C and .H files and change all instances of angularOscillating
to libMyPolynom.

sed -e 's/angularOscillating/libMyPolynom/g' \
libMyPolynomVelocityPointPatchVectorField.C > tmp.C

mv tmp.C libMyPolynomVelocityPointPatchVectorField.C
sed -e 's/angularOscillating/libMyPolynom/g' \
libMyPolynomVelocityPointPatchVectorField.H > tmp.H

mv tmp.H libMyPolynomVelocityPointPatchVectorField.H

To be able to compile the library it is also necessary to edit the files and options files inside
the Make folder. The Make/files should only include the following:� �
1 l ibMyPolynomVelocityPointPatchVectorFie ld .C
2

3 LIB = $ (FOAM USER LIBBIN) / libMyPolynomVelocity� �
Note the addition USER in line 3, this places the library in the user library directory and makes it
impossible for the user to overwrite any original OpenFOAM libraries.

2



The Make/options should include the following:� �
1 EXE INC = \
2 −I$FOAM SRC/ t r i S u r f a c e / ln Inc lude \
3 −I$FOAM SRC/meshTools/ ln Inc lude \
4 −I$FOAM SRC/dynamicMesh/ ln Inc lude \
5 −I$FOAM SRC/ f in i teVolume / ln Inc lude \
6 −I$FOAM SRC/ fvMotionSolver / ln Inc lude
7

8 LIB LIBS = \
9 − l t r i S u r f a c e \
10 −lmeshTools \
11 −ldynamicMesh \
12 −l f i n i t eVo lume� �
We note that one line must be added compared to the file we copied. The reason is that OpenFOAM
implicitly includes files from the current library from which we copied the files. Those include-files
are no longer in the current library.

Now the library can be compiled from the libMyPolynomVelocity folder ($FOAM RUN/libMyPolynomVelocity)
by typing:

wmake libso

OpenFOAM needs to be instructed to use our libMyPolynomVelocity library. That is done by
adding

libs ("libMyPolynomVelocity.so");

at the bottom of system/controlDict and creating a boundary field of type libMyPolynomVelocity
in the 0/pointMotionU file. An example of a pointMotionU file where our mesh boundary condition
is applied to the body patch is shown here:� �
1 /*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*\
2 | ========= | |
3 | \\ / F i e l d | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O pera t i on | Version : 1 .5 |
5 | \\ / A nd | Web: h t t p ://www. openfoam . org |
6 | \\/ M an ipu l a t i on | |
7 \*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*/
8

9 FoamFile
10 {
11 ve r s i on 2 . 0 ;
12 format a s c i i ;
13 c l a s s po in tVecto rF i e ld ;
14 ob j e c t pointMotionU ;
15 }
16

17 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
18

19 dimensions [ 0 1 −1 0 0 0 0 ] ;
20

21 i n t e r n a l F i e l d uniform (0 0 0) ;
22

23 boundaryField
24 {
25 f i xedSurround ings
26 {
27 type f ixedValue ;
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28 value uniform (0 0 0) ;
29 }
30 movingSurroundings
31 {
32 type s l i p ;
33 }
34 body
35 {
36 type libMyPolynomVelocity ;
37 a x i s (0 0 1) ;
38 o r i g i n ( 1 . 5 e−3 1 .5 e−3 0) ;
39 angle0 0 ;
40 amplitude 0 . 5 ;
41 omega 2094 ;
42 value uniform (0 0 0) ;
43 }
44 }� �
Note that this corresponds to the original entries for angularOscillatingVelocity boundary
conditions but we now use the new type name.
The solver that will be used is called icoDyMFoam, which is a transient solver for incompressible,
laminar flow of Newtonian fluids with moving mesh. In order to only deform the mesh without
doing any flow calculations the moveMesh utility can be used. For icoDyMFoam or moveMesh to work
correctly it is necessary to add a dynamicMeshDict file in the constant folder. An example of a
dynamicMeshDict is shown below:� �
1 /*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*− C++ −*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*\
2 | ========= | |
3 | \\ / F i e l d | OpenFOAM: The Open Source CFD Toolbox |
4 | \\ / O pera t i on | Version : 1 .5 |
5 | \\ / A nd | Web: h t t p ://www.OpenFOAM. org |
6 | \\/ M an ipu l a t i on | |
7 \*−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−*/
8 FoamFile
9 {
10 ve r s i on 2 . 0 ;
11 format a s c i i ;
12 c l a s s d i c t i o n a r y ;
13 ob j e c t mot ionPropert i e s ;
14 }
15 // * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
16

17 dynamicFvMesh dynamicMotionSolverFvMesh ;
18

19 motionSolverLibs ( ” l i b f vMot i onSo lv e r s . so ” ) ;
20 s o l v e r v e l o c i t y L a p l a c i a n ;
21

22 d i f f u s i v i t y uniform ;� �
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2.2 A closer look at the library

At the moment, our new library is an exact copy of the angularOscillatingVelocity library. We will
now take a closer look at the library to learn how to modify it. In order to implement a new patch
deformation it is neccessary to modify the lines where the input variables, that are read from the
0/pointMotionU dictionary, are initialised.
That is done in libMyPolynomVelocityPointPatchVectorField.H, no other modification to the
.H file is necessary. In this case, the boundary condition will need an axis, origin, base angle,
amplitude and frequency.� �
52 pub l i c f ixedValuePointPatchFie ld<vector>
53 {
54 // Pr iva t e data
55

56 vec to r a x i s ;
57 vec to r o r i g i n ;
58 s c a l a r ang l e0 ;
59 s c a l a r ampl i tude ;
60 s c a l a r omega ;
61

62 po in tF i e l d p0 ;� �
The libMyPolynomVelocityPointPatchVectorField.C has four different constructors which

all give values to the variables initialised in the .H file. One of them looks up the values in the
0/pointMotionU, the other give possibilities for initialisation with other methods. These construc-
tors need to be modified to include the input variables defined in the .H file. The second constructor,
the one that reads from the dictionary, is shown here:� �
57 l ibMyPolynomVelocityPointPatchVectorFie ld : :
58 l ibMyPolynomVelocityPointPatchVectorFie ld
59 (
60 const pointPatch& p ,
61 const DimensionedField<vector , pointMesh>& iF ,
62 const d i c t i o n a r y& d i c t
63 )
64 :
65 f ixedValuePointPatchFie ld<vector >(p , iF , d i c t ) ,
66 a x i s ( d i c t . lookup ( ” a x i s ” ) ) ,
67 o r i g i n ( d i c t . lookup ( ” o r i g i n ” ) ) ,
68 ang l e0 ( r eadSca la r ( d i c t . lookup ( ” angle0 ” ) ) ) ,
69 ampl i tude ( r eadSca la r ( d i c t . lookup ( ” amplitude ” ) ) ) ,
70 omega ( r eadSca la r ( d i c t . lookup ( ”omega” ) ) )
71 {
72 i f ( ! d i c t . found ( ” value ” ) )
73 {
74 updateCoef f s ( ) ;
75 }
76

77 i f ( d i c t . found ( ”p0” ) )
78 {
79 p0 = v e c t o r F i e l d ( ”p0” , d i c t , p . s i z e ( ) ) ;
80 }
81 e l s e
82 {
83 p0 = p . l o c a l P o i n t s ( ) ;
84 }
85 }� �
We recognize the entries in the 0/pointMotionU file.
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The updateCoeffs method under Member Functions is where the calculations for the deforma-
tion take place. The ”=” operator must be redefined to include the velocity of the nodes on the
deformed patch. The deformation is defined as velocity of nodes at each time step in a particular
direction.� �

124 // * * * * * * * * * * * * * Member Functions * * * * * * * * * * * //
125

126 void angu l a rOsc i l l a t i ngVe l o c i t yPo in tPat chVec to rF i e l d : : updateCoef f s ( )
127 {
128 i f ( th i s−>updated ( ) )
129 {
130 re turn ;
131 }
132

133 const polyMesh& mesh = th i s−>d imens i oned In t e rna lF i e ld ( ) . mesh ( ) ( ) ;
134 const Time& t = mesh . time ( ) ;
135 const pointPatch& p = th i s−>patch ( ) ;
136

137 s c a l a r ang le = ang l e0 + ampl itude * s i n ( omega * t . va lue ( ) ) ;
138 vec to r axisHat = a x i s /mag( a x i s ) ;
139 v e c t o r F i e l d p0Rel = p0 − o r i g i n ;
140

141 v e c t o r F i e l d : : operator=
142 (
143 (
144 p0
145 + p0Rel *( cos ( ang le ) − 1)
146 + ( axisHat ˆ p0Rel* s i n ( ang le ) )
147 + ( axisHat & p0Rel ) *(1 − cos ( ang le ) ) * axisHat
148 − p . l o c a l P o i n t s ( )
149 ) / t . deltaT ( ) . va lue ( )
150 ) ;
151

152 f ixedValuePointPatchFie ld<vector > : : updateCoef f s ( ) ;
153 }� �

The write function outputs information regarding the deformation and its control variables:� �
156 void angu l a rOsc i l l a t i ngVe l o c i t yPo in tPat chVec to rF i e l d : : wr i t e
157 (
158 Ostream& os
159 ) const
160 {
161 pointPatchFie ld<vector > : : wr i t e ( os ) ;
162 os . writeKeyword ( ” a x i s ” )
163 << a x i s << token : :END STATEMENT << nl ;
164 os . writeKeyword ( ” o r i g i n ” )
165 << o r i g i n << token : :END STATEMENT << nl ;
166 os . writeKeyword ( ” angle0 ” )
167 << ang l e0 << token : :END STATEMENT << nl ;
168 os . writeKeyword ( ” amplitude ” )
169 << ampl i tude << token : :END STATEMENT << nl ;
170 os . writeKeyword ( ”omega” )
171 << omega << token : :END STATEMENT << nl ;
172 p0 . writeEntry ( ”p0” , os ) ;
173 writeEntry ( ” value ” , os ) ;
174 }� �
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2.3 Polynomial patch deformation with periodic motion.

The following changes have already been implemented into the library that can be found on the
course homepage.
Here a patch deformation will be implemented according to a polynomial which constants are given
in 0/pointMotionU. The polynomial here will be second order in both x and y but can easily be
changed for another function. The polynomial has the form:

z = X2 · x2 + X1 · x+ Y2 · y2 + Y1 · y + Cconst

To be able to describe a surface in any direction by only x and y a new coordinate system is set
up that will be used for the polynomial. The xAxis and yAxis denote the transformation from the
fixed coordinate system. The origin denotes the origin of the new coordinate system. defTime
controls how long time the deformation should take and periodic is set to 1 if the deformation should
move back to original position after deformation and then repeat (active flow control). These input
values are declared in libMyPolynomVelocityPointPatchVectorField.H:� �
52 pub l i c f ixedValuePointPatchFie ld<vector>
53 {
54 // Pr iva t e data
55

56 vec to r o r i g i n ;
57 po in tF i e l d p0 ;
58

59 s c a l a r X2 ;
60 s c a l a r X1 ;
61 s c a l a r Y2 ;
62 s c a l a r Y1 ;
63 s c a l a r Cconst ;
64 vec to r xAxis ;
65 vec to r yAxis ;
66 s c a l a r p e r i o d i c ;
67 s c a l a r defTime ;� �
The input variables are initialised in the four constructors in
libMyPolynomVelocityPointPatchVectorField.C.
Below is the initialization of the input variables in the first constructor shown. All four constructors
should be modified accordingly.� �
40 l ibMyPolynomVelocityPointPatchVectorFie ld : :
41 l ibMyPolynomVelocityPointPatchVectorFie ld
42 (
43 const pointPatch& p ,
44 const DimensionedField<vector , pointMesh>& iF
45 )
46 :
47 f ixedValuePointPatchFie ld<vector >(p , iF ) ,
48 o r i g i n ( vec to r : : z e ro ) ,
49 p0 (p . l o c a l P o i n t s ( ) ) ,
50 X2 ( 0 . 0 ) ,
51 X1 ( 0 . 0 ) ,
52 Y2 ( 0 . 0 ) ,
53 Y1 ( 0 . 0 ) ,
54 Cconst ( 0 . 0 ) ,
55 xAxis ( vec to r : : z e ro ) ,
56 yAxis ( vec to r : : z e ro ) ,
57 p e r i o d i c ( 0 . 0 ) ,
58 defTime ( 0 . 0 )
59 {}� �
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Next is where the deformation calculations take place. First the points on the patch relative to
the coordinate system of the polynomial are found. These points are then rotated from the fixed
coordinate system, (x, y, z), into the coordinate system of the polynomial,(X,Y, Z). The rotation is
done using the following definition of Euler angles, where line of nodes N is the intersection between
the two coordinate systems xy and XY planes. α is the angle between the x-axis and the line of
nodes, β is the angle between the z-axis and the Z-axis and γ is the angle between the line of nodes
and the X-axis. The rotational matrix is then given as

p̂ = pR

= [x, y, z]

 cosα − sinα 0
sinα cosα 0

0 0 1

  1 0 0
0 cosβ − sinβ
0 sinβ cosβ

  cos γ − sin γ 0
sin γ cos γ 0

0 0 1


where the leftmost matrix represents a rotation around the z axis of the original reference frame.
The middle matrix represents a rotation around an intermediate x axis which is the line of nodes,
N , and the rightmost matrix represents a rotation around the axis Z of the final reference frame.
Carrying out the matrix multiplication gives:

R =

 cosα cos γ − sinα cosβ sin γ − cosα sin γ − sinα cosβ cos γ sinβ sinα
sinα cos γ + cosα cosβ sin γ − sinα sin γ + cosα cosβ cos γ − sinβ cosα

sinβ sin γ sinβ cos γ cosβ


In line 178 below the rotation matrix R is created. The for loop in line 183 rotates the points and
creates the plane and rotates it then back to the original coordinate system. The scalar multipl is
used to control the direction of deformation and if the time, t.value(), is larger than the defined
deformation time, defTime, for non periodic deformation it becomes zero. Finally in line 196 the
”=” operator is redefined in units of velocity.� �

146 void l ibMyPolynomVelocityPointPatchVectorFie ld : : updateCoef f s ( )
147 {
148 i f ( th i s−>updated ( ) )
149 {
150 re turn ;
151 }
152

153 const polyMesh& mesh = th i s−>d imens i oned In t e rna lF i e ld ( ) . mesh ( ) ( ) ;
154 const Time& t = mesh . time ( ) ;
155 const pointPatch& p = th i s−>patch ( ) ;
156

157 v e c t o r F i e l d p0Rel = p0 − o r i g i n ; // Points r e l a t i v e to new o r i g i n
158 vec to r zAxis = xAxis ˆ yAxis ;
159 vec to r xAxisOrg = vecto r (1 , 0 , 0) ; // Or i g ina l a x i s used f o r r e f e r ence
160 vec to r yAxisOrg = vecto r (0 , 1 , 0) ;
161 vec to r zAxisOrg = vector (0 , 0 , 1) ;
162

163 // Euler ang l e s s t a r t
164 vec to r Nl ine = ( xAxisOrg ˆ yAxisOrg ) ˆ ( xAxis ˆ yAxis ) ;
165 s c a l a r alpha = acos ( xAxisOrg & Nl ine ) ; // /(mag( xAxisOrg )*mag( Nl ine ) ) ) ;
166 s c a l a r beta = acos ( zAxisOrg & zAxis ) ; // /(mag( zAxisOrg )*mag( zAxis ) ) ) ;
167 s c a l a r gamma = acos ( Nl ine & xAxis ) ; // /(mag( Nl ine )*mag( xAxis ) ) ) ;
168 s c a l a r Rrot1 ( cos ( alpha ) * cos (gamma)−s i n ( alpha ) * cos ( beta ) * s i n (gamma) ) ;
169 s c a l a r Rrot2(−cos ( alpha ) * s i n (gamma)−s i n ( alpha ) * cos ( beta ) * cos (gamma) ) ;
170 s c a l a r Rrot3 ( s i n ( beta ) * s i n ( alpha ) ) ;
171 s c a l a r Rrot4 ( s i n ( alpha ) * cos (gamma)+cos ( alpha ) * cos ( beta ) * s i n (gamma) ) ;
172 s c a l a r Rrot5(− s i n ( alpha ) * s i n (gamma)+cos ( alpha ) * cos ( beta ) * cos (gamma) ) ;
173 s c a l a r Rrot6(− s i n ( beta ) * cos ( alpha ) ) ;
174 s c a l a r Rrot7 ( s i n ( beta ) * s i n (gamma) ) ;
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175 s c a l a r Rrot8 ( s i n ( beta ) * cos (gamma) ) ;
176 s c a l a r Rrot9 ( cos ( beta ) ) ;
177 // Rotat ion matrix c rea t ed
178 t enso r Rrot ( Rrot1 , Rrot2 , Rrot3 , Rrot4 , Rrot5 , Rrot6 , Rrot7 , Rrot8 ,

Rrot9 ) ;
179 t enso r RrotInv = inv ( Rrot ) ;
180 vec to r p0rot ;
181 v e c t o r F i e l d sd=p0Rel ;
182 vec to r sb = vector ( 0 . 5 , 0 , 0) ;
183 f o r A l l ( p0 , i t e r )
184 {
185 p0rot = p0Rel [ i t e r ] & Rrot ; // p r e l a t i v e to new o r i g i n ro t a t e d
186 // Plane from x and y va l u e s c a l c u l a t e d and i n s e r t e d in t o z va l u e s
187 p0rot = vecto r (0 , 0 , X2 *p0rot [ 0 ] * p0rot [0 ]+ X1 *p0rot [0 ]+ Y2 *p0rot

[ 1 ] * p0rot [1 ]+ Y1 *p0rot [1 ]+ Cconst ) ;
188 sd [ i t e r ] = p0rot & RrotInv ; // Plane ro t a t ed back to o r i g i n a l

p o s i t i o n
189 } ;
190 s c a l a r mul t ip l = 1 ;
191 i f ( p e r i o d i c == 1 ) // For p e r i o d i c b . c .
192 {
193 i f ( ( i n t ) f l o o r ( t . va lue ( ) / defTime )% 2 != 0) mul t ip l = −1; //

Revese motion f o r p e r i o d i c b . c .
194 }
195 e l s e i f ( ( p e r i o d i c == 0) && ( t . va lue ( )> defTime ) ) mul t ip l = 0 ; // No

motion
196 v e c t o r F i e l d : : operator=
197 (
198 sd *mult ip l / defTime
199 ) ;
200

201 f ixedValuePointPatchFie ld<vector > : : updateCoef f s ( ) ;
202 }� �
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3 Deformation of a square cylinder

The following case files can be found on the course homepage.
A mesh with squared cylinder will be used as an example, see fig 2. The cylinder has the following
dimensions: length 20 cm, width 30 cm and height 10 cm. It is fixed to the walls, in the z-direction,
by the ends. This mesh is very coarse and will not give correct results but is used in illustrative
purpose to show possibilities that patch deformation give. Deformation will be done on top and
bottom and then periodic deformation will be added to the top and effects on the flow be compared.
The inlet velocity is Ux = 1 m/s, from the left, and slip conditions on tunnel walls and no slip
condition on cylinder. Boundary conditions set in 0/pointMotionU are:� �

cubeY
{

type libMyPolynomVelocity ;
o r i g i n ( 0 . 7 0 . 8 0 . 15 ) ;
va lue uniform (0 0 0) ;
X2 −2;
X1 0 ;
Y2 0 ;
Y1 0 ;
Cconst 0 . 0 2 ;
xAxis (1 0 0) ;
yAxis (0 0 1) ;
p e r i o d i c 1 ;
defTime 0 . 2 ;

}� �
The boundary conditions show that the deformation is suppose to take 0.2 s and the shape of the
patch should follow the function f(x, y) = −2x2 + 0.02 with the origin in (0.7 0.6 0.15) which is the
center of the upper patch and they should return to origin and repeat. One period then takes 0.4 s.
The same boundary conditions are set for the YMinus patch of the cylinder except that periodic
is set to 0. The solver used is icoDyMFoam. Figure 3 shows the flow for the original mesh, without
any deformation, and then for deformed mesh without periodic patch deformation. Figure 4 shows
the effect the periodic movement of the patch on top of the cylinder has on the flow.

Figure 2: The original mesh, dimensions of the cylinder are length: 20 cm, width 30 cm and height
10 cm.
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(a) (b)

Figure 3: The inlet velocity is Ux = 1 m/s from left. The images show U[m/s] after 2 s for: (a) the original
mesh without any deformation, (b) deformed mesh but no periodic boundary.

(a) (b)

(c)

Figure 4: The periodic movement of the patch on top of the cylinder affects the flow. The inlet velocity is
Ux = 1 m/s and the figures are at (a) t = 1.76 s, (b) t = 1.88 s, (c) t= 2.00 s.
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