
CFD with OpenSource software

A course at Chalmers University of Technology
Taught by Håkan Nilsson

Project work:

A chtMultiRegionSimpleFoam tutorial

Developed for OpenFOAM-2.1.x
Requires: ..

Author:
Maaike van der Tempel

Peer reviewed by:

Disclaimer: This is a student project work, done as part of a course where OpenFOAM and some
other OpenSource software are introduced to the students. Any reader should be aware that it
might not be free of errors. Still, it might be useful for someone who would like to learn some

details similar to the ones presented in the report and in the accompanying files.

October 22, 2012

Introduction

This tutorial describes how to simulate heat transfer between solids and fluids in OpenFOAM. It
shows how to pre-process, run and post-process a basic steady state case involving the conjugate
heat transfer between different regions in a 2D domain. A link between theory and model will be
made.
We will take a closer look at the used solver chtMultiRegionSimpleFoam, and based on the theoret-
ical background we will define situations where for buoyancy in fluid the Boussinesq approximation
for incompressible fluids can be used.
An approach fo a new solver, chtMultiRegionSimpleBoussinesqFoam is presented, and possible
other ways of creating it.

1

Chapter 1

Heat Transfer

1.1 Heat Transfer

Heat transfer occurs through three mechanisms: conduction, radiation and convection.
Steady heat conduction is described by a Laplace equation while unsteady conduction is governed
by the heat equation.
In most applications, heat conduction in a solid needs to be considered along with heat convection
in an adjacent fluid: the conjugate heat transfer problems. These problems must be solved by
iterating between the equations describing the two types of heat transfer must. In addition radiation
can be added.
In flows accompanied by heat transfer, the fluid properties are normally temperature-dependent,
such as the density. Variations in density can be the cause of the fluid motion.
In such a case, the properties are calculated using the temperature on its current iteration, then
the temperature is updated, etc. More important is that for these compressible flows, energy and
momentum equations are coupled and must be solved simultaneously.
When density variation stays limited, the density can be treated as constant in the unsteady and
convection terms, and as variable only in the gravitational term: this is the Boussinesq approxi-
mation. The density is then assumed to vary linearly with temperature. Density variations due to
thermal expansion are then given by:

∆ρ = ρ0β∆T
where
ρ0 is the reference density
β is the coefficient of thermal expansion, and
∆T is the temperature difference across the fluid.

This approximation allows to solve the equations with methods for incompressible flow. It intro-
duces errors of the order of 1 % if the temperature difference is smaller then 15◦ for air. For natural
ventilation cases, where temperature differences remain small, is the Boussinesq approximation thus
a valid approximation to speed up numerical simulation.

1.2 Heat Transfer in OpenFOAM

In OpenFOAM 2.1.x, several solvers can be found to simulate heat transfer.
Heat transfer in solids can be simulated by solving the Laplace equation for the conductive heat
transfer in a solid (laplacianFoam).
For fluids, different approaches are possible depending on if the fluid is considered compressible or
not. The buoyancy problems in compressible flows can be solved using the buoyantPimpleFoam

2

solver for transient cases and buoyantSimpleFoam solver for steady state cases.
When the fluid is presumed to be an incompressible flow using the Boussinesq approximation the
buoyantBoussinesqPimpleFoam solver (transient) buoyantBoussinesqSimpleFoam solver (steady
state) are present in OpenFOAM 2.1.x.

Solvers that combine other solvers for solid and fluid regions to calculate the conjugated heat
transfer are also present. In 2.1.x, a transient (chtMultiRegionFoam) and a steady state solver
(chtMultiRegionSimpleFoam) are already included. These two solvers consider the fluid regions as
compressible flows.

For small temperature differences - as f.e. in natural convection, the Boussinesq approximation
is a very accurate approximation. It is therefore interesting to create a new solver that considers
the fluid region as an incompressible flow, based on the chtMultiRegionSimpleFoam solver and the
buoyantBoussinesqSimpleFoam solver already present in the solver library.

In the following we will only focus on the steady state solver chtMultiRegionSimpleFoam. We
will demonstrate the solver using a well known plane wall problem that can be found on the follow-
ing website to start.

http://openfoamwiki.net/index.php/Getting_started_with_chtMultiRegionSimpleFoam

_-_planeWall2D

3

Chapter 2

chtMultiRegionSimpleFoam

The solver chtMultiRegionSimpleFoam is the steady-state version of chtMultiRegionFoam. Heat
conduction in solids (laplacianFoam) is combined with a buoyantFoam solver for conjugate heat
transfer between solid region and fluid regions.

2.1 Solver: chtMultiRegionSimpleFoam

Go to the solver’s directory

cd $FOAM_SOLVERS/heatTransfer/chtMultiRegionFoam/chtMultiRegionSimpleFoam

ls

2.1.1 chtMultiRegionSimpleFoam.C

The directory contains the main file chtMultiRegionSimpleFoam.C, and a \Make ,fluid and
\solid directory. Several *.H files are included in the main file, each containing code included
by default in OpenFOAM.

---/

#include "fvCFD.H"

#include "basicRhoThermo.H"

#include "turbulenceModel.H"

#include "fixedGradientFvPatchFields.H"

#include "regionProperties.H"

#include "basicSolidThermo.H"

#include "radiationModel.H"

// * //

int main(int argc, char *argv[])

{

#include "setRootCase.H"

#include "createTime.H"

regionProperties rp(runTime);

#include "createFluidMeshes.H"

#include "createSolidMeshes.H"

#include "createFluidFields.H"

#include "createSolidFields.H"

#include "initContinuityErrs.H"

...

// *** //

4

A list of the included .H files and their purposes is given below:

fvCFD.H - standard file for for finite volume method
$FOAM_SRC/finiteVolume/cfdTools/general/include/fvCFD.H

basicRhoThermo.H - Basic thermodynamic properties based on density
$FOAM_SRC/thermophysicalModels/basic/rhoThermo/basicRhoThermo/basicRhoThermo.H

turbulenceModel.H - Abstract base class for compressible turbulence models
$FOAM_SRC/turbulenceModels/compressible/turbulenceModel/turbulenceModel.H

fixedGradientFvPatchFields.H $FOAM_SRC/finiteVolume/fields/fvPatchFields/basic/fixedGradient

/fixedGradientFvPatchFields.H

regionProperties.H - Simple class to hold region information for coupled region simulations
$FOAM_SRC/turbulenceModels/compressible/turbulenceModel/derivedFvPatchFields

/turbulentTemperatureCoupledBaffle/regionProperties.H

basicSolidThermo.H - Basic solid thermodynamic properties
$FOAM_SRC/thermophysicalModels/basicSolidThermo/basicSolidThermo/basicSolidThermo.H

radiationModel.H - Namespace for radiation modelling
$FOAM_SRC/thermophysicalModels/radiationModels/radiationModel/radiationModel/radiationModel.H

setRootCase.H - checks folder structure of the case
$FOAM_SRC/OpenFOAM/include/setRootCase.H

createTime.H - check runtime according to the controlDict and initiates time variables
$FOAM_SRC/OpenFOAM/include/createTime.H

createFluidMeshes.H - defines fluid region in domain
$FOAM_SOLVERS/heatTransfer/chtMultiRegionFoam/chtMultiRegionSimpleFoam/fluid/createFluidMeshes.H

createFluidFields.H - creates the fields for the fluid region: rho, kappa, U, phi, g, turbulence, gh,
ghf, p rgh
$FOAM_SOLVERS/heatTransfer/chtMultiRegionFoam/chtMultiRegionSimpleFoam/fluid/createFluidFields.H

initContinuityErrs.H - declare and initialise the cumulative continuity error
$FOAM_SRC/finiteVolume/cfdTools/general/include/initContinuityErrs.H

The second part of the chtMultiRegionSimpleFoam.C file contains the solver loop. Here the
runTime field is set. Then, for each region the region fields are set using the last timestep (
setRegionFluidFields.H), the algorithm is checked (readFluidMultiRegionSIMPLEControls.H)
and the equations are loaded and solved by the solver (in solveFluid.H and solveSolid.H).

// * //

while (runTime.loop())

{

Info<< "Time = " << runTime.timeName() << nl << endl;

forAll(fluidRegions, i)

{

Info<< "\nSolving for fluid region "

<< fluidRegions[i].name() << endl;

#include "setRegionFluidFields.H"

#include "readFluidMultiRegionSIMPLEControls.H"

#include "solveFluid.H"

}

5

forAll(solidRegions, i)

{

Info<< "\nSolving for solid region "

<< solidRegions[i].name() << endl;

#include "setRegionSolidFields.H"

#include "readSolidMultiRegionSIMPLEControls.H"

#include "solveSolid.H"

}

runTime.write();

Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"

<< " ClockTime = " << runTime.elapsedClockTime() << " s"

<< nl << endl;

}

// *** //

2.1.2 SolveFluid.H

// Pressure-velocity SIMPLE corrector

p_rgh.storePrevIter();

rho.storePrevIter();

{

#include "UEqn.H"

#include "hEqn.H"

#include "pEqn.H"

}

turb.correct();

In solveFluid.H we see that the fluid region is solved using buoyantSimpleFoam. For each iteration,
the density en pressure from the former iteration is used.
The momentum equation is solved in UEqn.H.

// Solve the Momentum equation

tmp<fvVectorMatrix> UEqn

(

fvm::div(phi, U)

+ turb.divDevRhoReff(U)

);

UEqn().relax();

solve

(

UEqn()

==

fvc::reconstruct

(

(

- ghf*fvc::snGrad(rho)

- fvc::snGrad(p_rgh)

)*mesh.magSf()

)

6

);

The heat equation in hEqn.H.

{

fvScalarMatrix hEqn

(

fvm::div(phi, h)

- fvm::Sp(fvc::div(phi), h)

- fvm::laplacian(turb.alphaEff(), h)

==

- fvc::div(phi, 0.5*magSqr(U), "div(phi,K)")

+ rad.Sh(thermo)

);

hEqn.relax();

hEqn.solve();

thermo.correct();

rad.correct();

Info<< "Min/max T:" << min(thermo.T()).value() << ’ ’

<< max(thermo.T()).value() << endl;

}

The pressure equation can be found in pEqn.H. It solves the pressure, corrects the momentum
velocities according to the new pressure field and adjusts the pressure level to obey overall mass
continuity. It ends by updating the thermal conductivity.

{

rho = thermo.rho();

rho = max(rho, rhoMin[i]);

rho = min(rho, rhoMax[i]);

rho.relax();

volScalarField rAU(1.0/UEqn().A());

surfaceScalarField rhorAUf("(rho*(1|A(U)))", fvc::interpolate(rho*rAU));

p_rgh.boundaryField().updateCoeffs();

U = rAU*UEqn().H();

UEqn.clear();

phi = fvc::interpolate(rho)*(fvc::interpolate(U) & mesh.Sf());

bool closedVolume = adjustPhi(phi, U, p_rgh);

dimensionedScalar compressibility = fvc::domainIntegrate(psi);

bool compressible = (compressibility.value() > SMALL);

surfaceScalarField buoyancyPhi(rhorAUf*ghf*fvc::snGrad(rho)*mesh.magSf());

phi -= buoyancyPhi;

// Solve pressure

for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)

{

fvScalarMatrix p_rghEqn

(

fvm::laplacian(rhorAUf, p_rgh) == fvc::div(phi)

7

);

p_rghEqn.setReference

(

pRefCell,

compressible ? getRefCellValue(p_rgh, pRefCell) : pRefValue

);

p_rghEqn.solve();

if (nonOrth == nNonOrthCorr)

{

// Calculate the conservative fluxes

phi -= p_rghEqn.flux();

// Explicitly relax pressure for momentum corrector

p_rgh.relax();

// Correct the momentum source with the pressure gradient flux

// calculated from the relaxed pressure

U -= rAU*fvc::reconstruct((buoyancyPhi + p_rghEqn.flux())/rhorAUf);

U.correctBoundaryConditions();

}

}

p = p_rgh + rho*gh;

#include "continuityErrs.H"

// For closed-volume cases adjust the pressure level

// to obey overall mass continuity

if (closedVolume && compressible)

{

p += (initialMass - fvc::domainIntegrate(thermo.rho()))

/compressibility;

p_rgh = p - rho*gh;

}

rho = thermo.rho();

rho = max(rho, rhoMin[i]);

rho = min(rho, rhoMax[i]);

rho.relax();

Info<< "Min/max rho:" << min(rho).value() << ’ ’

<< max(rho).value() << endl;

// Update thermal conductivity

kappa = thermo.Cp()*turb.alphaEff();

}

2.1.3 SolveSolid.H

The solid region is solved by solving the laplacian equation.

8

{

for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)

{

fvScalarMatrix tEqn

(

-fvm::laplacian(kappa, T)

);

tEqn.relax();

tEqn.solve();

}

Info<< "Min/max T:" << min(T).value() << ’ ’

<< max(T).value() << endl;

}

thermo.correct();

2.2 Differences between cht in fluid and buoyantSimpleFoam

In order to understand how the coupling between the fluid and solid regions is handled in chtMultiRegionSimpleFoam,
the differences and analogy between the implementation of the fluid part of the solver and bouyantSimpleFoam

will be discussed in this section.

2.2.1 C-files

When comparing the two main files of the solvers, differences can be found in the included header
files.
In chtMultiRegionSimpleFoam, different turbulence models can be used, while in buoyantSimpleFoam,
the RASmodel is specified.
In chtMultiRegionSimpleFoam.C, the used thermodynamic properties are based on density (basicRhoThermo.H),
while in buoyantSimpleFoam.C the used thermodynamic properties are based on compressibility
(basicPsiThermo.H). basicRhoThermo.H is valid for both liquids and gases, but in the case of ideal
gases, the only difference between the two is that the density rhoThermo is updated once every
time step and psiThermo will always use the up-to-date pressure field. rhoThermo also includes the
gravitational acceleration, so no extra readGravitationalAcceleration.H file is included in the
cht-solver.
Additional information on the two different models can be found on the OpenFOAM R© -Extend
Discussion Board

http://www.extend-project.de/user-forums/extend-groups/

16-special-interest-group-on-general-chemistrythermo-group-forum

For chtMultiRegionSimpleFoam, the convergence information and checks for the SIMPLE loop are
done inside the loop and read from readFluidMultiRegionSIMPLEControls.H.
In both solvers, the mesh and the fields must be assigned. This is done in the cht-solver for each
region individually and tin a way that the solver knows where to look in the structure of a case for
the specific region through regionProperties.H.

#include "createFluidMeshes.H"

#include "createSolidMeshes.H"

#include "createFluidFields.H"

#include "createSolidFields.H"

In createFluidFields.H in chtMultiRegionSimpleFoam/fluid/ the pointer lists are initialized
and populated so that the correct thermophysical properties can be assigned.

9

// Initialise fluid field pointer lists

PtrList<basicRhoThermo> thermoFluid(fluidRegions.size());

PtrList<volScalarField> rhoFluid(fluidRegions.size());

PtrList<volScalarField> kappaFluid(fluidRegions.size());

PtrList<volVectorField> UFluid(fluidRegions.size());

...

// Populate fluid field pointer lists

forAll(fluidRegions, i)

{

Info<< "*** Reading fluid mesh thermophysical properties for region "

<< fluidRegions[i].name() << nl << endl;

Info<< " Adding to thermoFluid\n" << endl;

thermoFluid.set

(

i,

basicRhoThermo::New(fluidRegions[i]).ptr()

);

Info<< " Adding to rhoFluid\n" << endl;

rhoFluid.set

(

i,

new volScalarField

(

IOobject

(

"rho",

runTime.timeName(),

fluidRegions[i],

IOobject::NO_READ,

IOobject::AUTO_WRITE

),

thermoFluid[i].rho()

)

);

...

}

The thermodynamical properties are read from the startTime directory of the region and set or
computed if not available. The setRegionFluidFields.H file is the crucial step before starting
to solve the equations. As this header file is included in the loop, the properties will be updated
taking into account the adjacent region before the next loop. The fluid fields are now written to the
variables of the different equations.

const fvMesh& mesh = fluidRegions[i];

basicRhoThermo& thermo = thermoFluid[i];

volScalarField& rho = rhoFluid[i];

volScalarField& kappa = kappaFluid[i];

volVectorField& U = UFluid[i];

surfaceScalarField& phi = phiFluid[i];

10

compressible::turbulenceModel& turb = turbulence[i];

volScalarField& p = thermo.p();

const volScalarField& psi = thermo.psi();

volScalarField& h = thermo.h();

const dimensionedScalar initialMass

(

"initialMass",

dimMass,

initialMassFluid[i]

);

radiation::radiationModel& rad = radiation[i];

const label pRefCell = pRefCellFluid[i];

const scalar pRefValue = pRefValueFluid[i];

volScalarField& p_rgh = p_rghFluid[i];

const volScalarField& gh = ghFluid[i];

const surfaceScalarField& ghf = ghfFluid[i];

To further understand how thechtMultiRegionSimpleFoam solver works, we will run and discuss a
basic case in heat transfer: the Plane Wall.

2.3 Tutorial Plane Wall case

In this tutorial, we will solve a one-dimensional, steady state situation where heat transferred.
This case is an example shown in the book Fundamentals of Heat and Mass Transfer by Frank
P. Incropera et. al, chapter 3, section 3.1 ”The Plane Wall”. It is basically a wall, with hot and
warm air flowing next to it, which results in a temperature gradient in the wall. In a 1D systems,
temperature gradients (and thus heat transfer) occur only in 1 direction.

Figure 2.1: PlaneWall, chapter 3.1,p.89

11

The heat flux through the wall is then given by
q = h1(Tw − Tws) = k

L (Tws − Tcs) = h2(Tcs − Tc)
where
h1 is the heat transfer coefficient at the surface of the wall with the warm fluid
h2 is the heat transfer coefficient at the surface of the wall with the cold fluid
Tw is the temperature of the warm fluid
Tws is the temperature of the surface at the warm fluid side
Twc is the temperature of the surface at the cold fluid side
Tc is the temperature of the cold fluid
k is the thermal conductivity of the solid
L is the width of the solid wall

2.3.1 Getting started

Copy the tutorial planeWall2D.tar.gz to the run directory, unpack and go to the case.

tar xzf planeWall2D.tar.gz

cd planeWall2D

tree

|---0

| |---epsilon

| |---k

| |---p

| |---p_rgh

| |---T

| |---U

| |---Ychar

| |---Ypmma

|---Allclean

|---Allrun

|--- constant

| |---bottomAir

| | |---g

| | |---radiationProperties

| | |---RASProperties

| | |---thermophysicalProperties

| | |---turbulenceProperties

| |---polyMesh

| | |---blockMeshDict

| | |---boundary

| |---regionProperties

| |---topAir

| | |---g

| | |---radiationProperties

| | |---RASProperties

| | |---thermophysicalProperties

| | |---turbulenceProperties

| |---wall

| | |---solidThermophysicalProperties

|--- system

|---bottomAir

| |---changeDictionaryDict

| |---decomposeParDict

12

| |---fvSchemes

| |---fvSolution

|---controlDict

|---decomposeParDict

|---fvSchemes

|---fvSolution

|---README

|---topAir

| |---changeDictionaryDict

| |---decomposeParDict

| |---fvSchemes

| |---fvSolution

|---topoSetDict

|---wall

|---changeDictionaryDict

|---decomposeParDict

|---fvSchemes

|---fvSolution

The file structure of the planeWall2D case is similar to other OpenFOAM tutorials where the case
directory has a /0, /constant and /system directory.

The /0 folder contains all empty initial and conditions of fluid and solid regions. It is only af-
ter creating the different regions, that this folder will contain subfolders per region with all initial
conditions.

In the /constant folder we can find the mesh setup in /constant/polyMesh. We also find di-
rectories per region with all transport, thermophysical properties and turbulence properties specific
for that region. The /regionProperties file contains the different fluidRegionNames and solidRe-
gionNames needed to find the different regions when preprocessing and running the case.

As usual in OpenFOAM tutorials; the solver-, write- and time-control can be found in the /system.
As different regions will be defined, a toposetsDict file is included in the /system directory.
The initial conditions per region can be found in /system/regionname/changeDictionaryDict.
When running the application changeDictionary, OpenFOAM will look here for all initial conditions
for that region and change them per region in the /verb+/0+ directory.
Below, the initial conditions for the velocity U for the fluid region bottomAir as mentioned in
/system/bottomAir/changeDictionaryDict. are given

dictionaryReplacement

{

U

{

internalField uniform (0.1 0 0);

boundaryField

{

leftLet

{

type fixedValue;

value uniform (0.1 0 0);

}

13

rightLet

{

type inletOutlet;

inletValue uniform (0 0 0);

value uniform (0.1 0 0);

}

bottomAir_bottom

{

type symmetryPlane;

}

"bottomAir_to_.*"

{

type fixedValue;

value uniform (0 0 0);

}

}

}

}

The bottomAir_to.* refers to the interface between the bottomAir-region and the solid region
Wall. These are the baffles in the orginial mesh with mappedWall patches.

2.3.2 Geometry and Initial Conditions

The planeWall case in OpenFOAM consists of an infinite solid and uniform wall with generic fluids
flowing on both sides of the wall, at different temperature. The geometry is based on the cavity case
geometry, and consists of a 1m x 1m x 0.1m mesh divided into 3 regions: two fluid regions and one
solid region.
The 3 regions are defined as follows:

topAir 0.6 to 1m - where the air is colder at 300K and flows from the left to the right at 0.1m/s.
The top patch is a symmetry plane.

wall 0.4 to 0.6m - where a solid wall is placed, initiated at 300K and has a high conduction factor.

bottomAir 0 to 0.4m - where the air is hot at 500K and flows from the left to the right at 0.1m/s.
The bottom patch is a symmetry plane.

2.3.3 Run and Post processing

Run the case in the terminal using the Allrun file.

runApplication blockMesh

runApplication topoSet

runApplication splitMeshRegions -cellZones -overwrite

remove fluid fields from solid regions

remove solid fields from fluid regions

for i in bottomAir topAir wall

do

changeDictionary -region $i > log.changeDictionary.$i

done

runApplication chtMultiRegionSimpleFoam

14

paraFoam -touchAll

With blockMesh the base mesh is created. With topoSet the different cellsets per region are made,
by splitMeshRegions the different regions are created. As in the /0 directory both solid and fluid
fields were included, the fluid fields must be removed from the solid regions and vice versa.
In a next step, the initial conditions are changed. The case is now ready to run the solver.

We now take a look at the log file log.chtMultiRegionSimpleFoam created while solving the case.

// * //

Create time

Create fluid mesh for region bottomAir for time = 0

Create fluid mesh for region topAir for time = 0

Create solid mesh for region wall for time = 0

*** Reading fluid mesh thermophysical properties for region bottomAir

Adding to thermoFluid

Selecting thermodynamics package

hRhoThermo<pureMixture<constTransport<specieThermo<hConstThermo<perfectGas>>>>>

Adding to rhoFluid

Adding to kappaFluid

Adding to UFluid

Adding to phiFluid

Adding to gFluid

Adding to turbulence

Selecting turbulence model type laminar

Adding to ghFluid

Adding to ghfFluid

Selecting radiationModel none

*** Reading fluid mesh thermophysical properties for region topAir

Adding to thermoFluid

Selecting thermodynamics package

hRhoThermo<pureMixture<constTransport<specieThermo<hConstThermo<perfectGas>>>>>

Adding to rhoFluid

Adding to kappaFluid

Adding to UFluid

Adding to phiFluid

Adding to gFluid

Adding to turbulence

Selecting turbulence model type laminar

Adding to ghFluid

Adding to ghfFluid

Selecting radiationModel none

*** Reading solid mesh thermophysical properties for region wall

Adding to thermos

Constructed constSolidThermo with

rho : rho [1 -3 0 0 0 0 0] 8000

Cp : Cp [0 2 -2 -1 0 0 0] 450

K : K [1 1 -3 -1 0 0 0] 80

Hf : Hf [0 2 -2 0 0 0 0] 1

emissivity : emissivity [0 0 0 0 0 0 0] 1

kappa : kappa [0 -1 0 0 0 0 0] 0

sigmaS : sigmaS [0 -1 0 0 0 0 0] 0

15

Time = 1

Solving for fluid region bottomAir

DILUPBiCG: Solving for Ux, Initial residual = 1,

Final residual = 0.0003272254, No Iterations 1

DILUPBiCG: Solving for Uy, Initial residual = 1,

Final residual = 0.0003192866, No Iterations 1

DILUPBiCG: Solving for h, Initial residual = 1,

Final residual = 0.0117141, No Iterations 1

Min/max T:300.0643 500.0003

GAMG: Solving for p_rgh, Initial residual = 0.7403903,

Final residual = 0.007175254, No Iterations 4

time step continuity errors : sum local = 0.0139927,

global = 0.001807746, cumulative = 0.001807746

Min/max rho:0.6951731 1.158375

Solving for fluid region topAir

DILUPBiCG: Solving for Ux, Initial residual = 1,

Final residual = 0.0001938523, No Iterations 1

DILUPBiCG: Solving for Uy, Initial residual = 1,

Final residual = 1.477592e-05, No Iterations 1

DILUPBiCG: Solving for h, Initial residual = 1,

Final residual = 0.0008823631, No Iterations 1

Min/max T:299.9991 300.0006

GAMG: Solving for p_rgh, Initial residual = 0.8957774,

Final residual = 0.005316061, No Iterations 3

time step continuity errors : sum local = 0.03498322,

global = 0.01049165, cumulative = 0.01229939

Min/max rho:1.15862 1.158626

Solving for solid region wall

DICPCG: Solving for T, Initial residual = 1,

Final residual = 0.01573355, No Iterations 2

Min/max T:300 300.1412

ExecutionTime = 0.37 s ClockTime = 1 s

...

We see that in the first the different fields per region are initialized and the different models (ther-
modynamic, turbulence, radiation) are added to the region. Then, the solver starts running.

As the different regions are solved, all regions should be added together to post-process the re-
sults and visualize them with paraview. The following files for post-processing were created:

planeWall2D{bottomAir}.OpenFOAM

planeWall2D{topAir}.OpenFOAM

planeWall2D{wall}.OpenFOAM

We can now post-process by opening paraview in the terminal and by loading the files in paraview
instead of using the application paraFoam.

paraview

We must open the 3 different regions, and load the internal mesh and the temperature T. Select all
3 files in the Pipeline Browser, and apply a filter GroupDatasets to handle the data in the different

16

regions together. Now we can visualize the temperature profile in the Y-access over the wall by
applying the Filter PlotOverLine.

Figure 2.2: Temperature in Plane Wall case

Figure 2.3: Temperature profile through Plane Wall case

We now see that the temperature gradient in the wall is very small, this means that our wall is
highly conductive. The two curves in the graph are the result of heat convection at the surfaces of
the wall.
The temperature at the warm side of the surface is
T0.6 = 364.207K
while the temperature at the cold side of the surface is
T0.4 = 364.863K
In /constant/wall/solidThermophysicalProperties we find the conductivity of our solid. The
thermal conductivity is 80 W/mK.
As our wall is 0.2m thick, we can now easily calculate the heat flux through the wall:
q = k

L (T0.4 − T0.6) to find the heat transfer coefficients on surfaces.

17

Here, this results in hwarm = 2W/m2K, hcold = 4W/M2K for a flow velocity of 0.1 m/s.

2.3.4 Using the case

This case can be used to check the simulated results of heat transfer coefficients along walls in
buildings using CFD.

We will rerun the case , making some adjustments and see how a smaller temperature difference, a
lower thermal conductivity of the wall en different wind speeds affect the heat transfer coefficients
at both sides of the wall.

topAir 0.6 to 1m - where the air is colder at 273K and flows from the left to the right at 1m/s and
at 4m/s. The top patch is a symmetry plane.

wall 0.4 to 0.6m - where a solid wall is placed, initiated at 273K and has a thermal conductivity of
5 W/mK, density of 2400 kg/m3andthermalcapacityof880J/kgK(averageforconcrete).0to0.4m −
wheretheairishotat293Kandflowsfromthelefttotherightat1m/sandat4m/s.Thebottompatchisasymmetryplane.

bottomAir

wind speed m/s Surface heat transfer W/m2K
U hws hc

1 1.0 0.9
4 4.77 4.79

Table 2.1: Heat transfer coefficients on surfaces

Now we can revisualize the temperature profile in the Y-access over the wall by applying the
Filter PlotOverLine.
The lower thermal conductivity results in a procentual bigger temperature gradient in the wall.

Figure 2.4: Temperature in Plane Wall case with 1m/s

18

Figure 2.5: Temperature profile through new Plane Wall case at 1m/s

In European standards used in building physics for (ISO 6946:2007), values for the heat convec-
tion coefficients are given to calculate the heat flux through a wall for surfaces with a normal (high)
emissivity, which can be used to benchmark a case.

Surface heat transfer Direction of heat flow
W/m2K Upwards Horizontal Downwards
hsi 10 7.7 6
hse 25 25 25

Table 2.2: Standard heat transfer coefficients on surfaces

19

Chapter 3

chtMultiRegionSimpleBoussinesqFoam

As mentioned in our heat transfer introduction, the Boussinesq approximation is valid in heat trans-
fer cases with air where temperature differences stay limited, as is the case for natural ventilation.
It is therefore interesting to create a new solver that considers the fluid region as an incompress-
ible flow, based on the chtMultiRegionSimpleFoam solver and the buoyantBoussinesqSimpleFoam

solver already present in the solver library. This is a steady-state solver for buoyant, turbulent flow
of incompressible fluids. It uses the Boussinesq approximation

ρeff = 1 − β(T − Tref)
where
ρeff is the effective (driving) density
β is the coefficient of thermal expansion [1/K]
T = temperature [K]
Tref = reference temperature [K]
It is valid when ρeff << 1

3.1 buoyantBoussinesqSimpleFoam

We will take a closer look at the buoyantBoussinesqSimpleFoam solver first.

cd $FOAM_SOLVERS/heatTransfer/buoyantBoussinesqSimpleFoam

The main file of the solver buoyantBoussinesqSimpleFoam.C has a similar construction to the
buoyantSimpleFoam solver, although some other header files are included and the heat equation
hEqn.H has become the temperature equation TEqn.H.
There is no thermodynamic model included (as the fluid is incompressible).

/*---*\

#include "fvCFD.H"

#include "singlePhaseTransportModel.H"

#include "RASModel.H"

#include "simpleControl.H"

int main(int argc, char *argv[])

{

#include "setRootCase.H"

#include "createTime.H"

#include "createMesh.H"

#include "readGravitationalAcceleration.H"

#include "createFields.H"

20

#include "initContinuityErrs.H"

simpleControl simple(mesh);

Info<< "\nStarting time loop\n" << endl;

while (simple.loop())

{

Info<< "Time = " << runTime.timeName() << nl << endl;

// Pressure-velocity SIMPLE corrector

{

#include "UEqn.H"

#include "TEqn.H"

#include "pEqn.H"

}

turbulence->correct();

runTime.write();

Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"

<< " ClockTime = " << runTime.elapsedClockTime() << " s"

<< nl << endl;

}

Info<< "End\n" << endl;

return 0;

}

// *** //

singlePhaseTransportModel.H - A simple single-phase transport model based on viscosity-
Model, used by the incompressible single-phase solvers like simpleFoam, turbFoam etc.
$FOAM_SRC/transportModels/incompressible/lnInclude/singlePhaseTransportModel.H

RASModel.H - Namespace for incompressible RAS turbulence models.
$FOAM_SRC/turbulenceModels/incompressible/RAS/RASModel/RASModel.H

These header files should thus be included in the chtMultiRegionSimpleBousinesqFoam, and in
the entire solver, the fluid should be considered as incompressible. All header-files etc. must thus
be adapted to the incompressible fluid approach.

3.2 Changing chtMultiRegionSimpleFoam

Copy the chtMultiRegionSimpleFoam solver into the user directory. Go to the solver, and change
the name of the solver into chtMultiRegionSimpleBoussinesqFoam.
Adapt the name in the main file and also the path in the Make/files.

OF21x

run

cd ..

cp -r $FOAM_SOLVERS/heatTransfer/chtMultiRegionFoam/chtMultiRegionSimpleFoam/ ./applications/solvers/

cd applications/solvers

21

mv chtMultiRegionSimpleFoam/ chtMultiRegionSimpleBoussinesqFoam

cd chtMultiRegionSimpleBoussinesqFoam/

wclean

mv chtMultiRegionSimpleFoam.C chtMultiRegionSimpleBoussinesqFoam.C

sed -i s/"chtMultiRegionSimpleFoam"/"chtMultiRegionSimpleBoussinesqFoam"/g chtMultiRegionSimpleBoussinesqFoam.C

sed -i s/"chtMultiRegionSimpleFoam"/"chtMultiRegionSimpleBoussinesqFoam"/g Make/files

sed -i s/"$FOAM_APPBIN"/"$FOAM_USER_APPBIN"/g Make/files

sed -i s/"FOAM_APPBIN"/"FOAM_USER_APPBIN"/g Make/files

The solid part of the chtMultiRegionSimpleFoam solver will be untouched. We will only focus on the
fluid part. Let us start by adapting the fluid and then changing the main file chtMultiRegionSimpleBoussinesqFoam.C.

cd fluid

vi solveFluid.H

We will compare the files in our new solver with the existing solver. Open therefore a new terminal:

OF21x

sol

cd heatTransfer/buoyantBoussinesqSimpleFoam$

vi buoyantBoussinesqSimpleFoam.C

vi TEqn.H

Change in solveFluid.H hEqn.H into TEqn.H and replace the content.

mv hEqn.H TEqn.H

gedit TEqn.H

Open UEqn.H and replace the content by

tmp<fvVectorMatrix> UEqn

(

fvm::div(phi, U)

+ turbulence->divDevReff(U)

);

UEqn().relax();

solve

(

UEqn()

==

fvc::reconstruct

(

(

- ghf*fvc::snGrad(rhok)

- fvc::snGrad(p_rgh)

)*mesh.magSf()

)

);

We deleted the if loop present in the original file as in the cht solver the simple loop is present in
the main file.

22

We now have changed the UEqn.H, TEqn.H, solveFluid.H. To change pEqn.H we must compare
the file with the pEqn.H file of buoyantSimpleFoam, to highlight the specific parts of the chtMulti-
RegionFoam, and then adapt this to the Boussinesq approach.
This gives the following pEqn.H for our new solver:

{

volScalarField rAU("rAU", 1.0/UEqn().A());

surfaceScalarField rAUf("(1|A(U))", fvc::interpolate(rAU));

p_rgh.boundaryField().updateCoeffs();

U = rAU*UEqn().H();

UEqn.clear();

phi = fvc::interpolate(U) & mesh.Sf();

adjustPhi(phi, U, p_rgh);

surfaceScalarField buoyancyPhi(rAUf*ghf*fvc::snGrad(rhok)*mesh.magSf());

phi -= buoyancyPhi;

// Solve pressure

for (int nonOrth=0; nonOrth<=nNonOrthCorr; nonOrth++)

{

fvScalarMatrix p_rghEqn

(

fvm::laplacian(rAUf, p_rgh) == fvc::div(phi)

);

p_rghEqn.setReference(pRefCell, getRefCellValue(p_rgh, pRefCell));

p_rghEqn.solve();

if (nonOrth == nNonOrthCorr)

{

// Calculate the conservative fluxes

phi -= p_rghEqn.flux();

// Explicitly relax pressure for momentum corrector

p_rgh.relax();

// Correct the momentum source with the pressure gradient flux

// calculated from the relaxed pressure

U -= rAU*fvc::reconstruct((buoyancyPhi + p_rghEqn.flux())/rAUf);

U.correctBoundaryConditions();

}

}

#include "continuityErrs.H"

p = p_rgh + rhok*gh;

if (p_rgh.needReference())

{

p += dimensionedScalar

23

(

"p",

p.dimensions(),

pRefValue - getRefCellValue(p, pRefCell)

);

p_rgh = p - rhok*gh;

}

}

Now the equations for our fluid part are set. We now must adapt the fields.
No changes were made in createFluidMeshes.H and readFluidMultiRegionSIMPLEControls.H.
We now have to change the createFluidFields.H and setRegionFields.H. We compare the ex-
isting files with the createField.H file of the buoyantSimpleFoam solver, and try to adapt the files
to the Boussinesq approach. This gives following files:

// Initialise fluid field pointer lists

PtrList<volScalarField> TFluid(fluidRegions.size());

PtrList<volScalarField> p_rghFluid(fluidRegions.size());

PtrList<volVectorField> UFluid(fluidRegions.size());

PtrList<volScalarField> kappatFluid(fluidRegions.size());

PtrList<volScalarField> rhokFluid(fluidRegions.size());

PtrList<surfaceScalarField> phiFluid(fluidRegions.size());

PtrList<uniformDimensionedVectorField> gFluid(fluidRegions.size());

PtrList<incompressible::RASModel> turbulence(fluidRegions.size());

PtrList<singlePhaseTransportModel> TransportModel(fluidRegions.size());

PtrList<dimensionedScalar> beta(fluidRegions.size());

PtrList<dimensionedScalar> TRef(fluidRegions.size());

PtrList<dimensionedScalar> Pr(fluidRegions.size());

PtrList<dimensionedScalar> Prt(fluidRegions.size());

PtrList<volScalarField> ghFluid(fluidRegions.size());

PtrList<surfaceScalarField> ghfFluid(fluidRegions.size());

PtrList<radiation::radiationModel> radiation(fluidRegions.size());

PtrList<volScalarField> pFluid(fluidRegions.size());

List<label> pRefCellFluid(fluidRegions.size(),0);

List<scalar> pRefValueFluid(fluidRegions.size(),0.0);

// Populate fluid field pointer lists

forAll(fluidRegions, i)

{

Info<< "*** Reading fluid mesh thermophysical properties for region "

<< fluidRegions[i].name() << nl << endl;

Info<< " Adding to TFluid\n" << endl;

TFluid.set

(

i,

new volScalarField

(

24

IOobject

(

"T",

runTime.timeName(),

fluidRegions[i],

IOobject::MUST_READ,

IOobject::AUTO_WRITE

),

fluidRegions[i]

)

);

Info<< " Adding to p_rghFluid\n" << endl;

p_rghFluid.set

(

i,

new volScalarField

(

IOobject

(

"p_rgh",

runTime.timeName(),

fluidRegions[i],

IOobject::MUST_READ,

IOobject::AUTO_WRITE

),

fluidRegions[i]

)

);

// kinematic turbulent thermal conductivity m2/s

Info<< " Adding to kappatFluid\n" << endl;

kappaFluid.set

(

i,

new volScalarField

(

IOobject

(

"kappat",

runTime.timeName(),

fluidRegions[i],

IOobject::MUST_READ,

IOobject::AUTO_WRITE

),

fluidRegions[i]

)

);

Info<< " Adding to UFluid\n" << endl;

UFluid.set

(

i,

new volVectorField

25

(

IOobject

(

"U",

runTime.timeName(),

fluidRegions[i],

IOobject::MUST_READ,

IOobject::AUTO_WRITE

),

fluidRegions[i]

)

);

//Instead of createPhi.H because of pointers.

Info<< " Adding to phiFluid\n" << endl;

phiFluid.set

(

i,

new surfaceScalarField

(

IOobject

(

"phi",

runTime.timeName(),

fluidRegions[i],

IOobject::READ_IF_PRESENT,

IOobject::AUTO_WRITE

),

linearInterpolate(U) & mesh.Sf()

)

);

//This is still a blur , this comes from readTransportProperties.H

//and is now included in the region

//here I have no clue if this is ok for the transport.

Info<< " singlePhaseTransportModel\n" << endl;

singlePhaseTransport.set

(

i,

singlePhaseTransportModel laminarTransport

(

UFluid[i],

phiFluid[i],

).ptr()

);

//Here based on existing createFluidFields, looks ok

// Thermal expansion coefficient [1/K]

beta.set

(

i,

new dimensionedScalar

(

fluidRegions[i].laminarTransport.lookup

26

(

"beta"

)

)

);

// Reference temperature [K]

TRef.set

(

i,

new dimensionedScalar

(

fluidRegions[i].laminarTransport.lookup

(

"TRef"

)

)

);

// Laminar Prandtl number

Pr.set

(

i,

new dimensionedScalar

(

fluidRegions[i].laminarTransport.lookup

(

"Pr"

)

)

);

// Turbulent Prandtl number

Prt.set

(

i,

new dimensionedScalar

(

fluidRegions[i].laminarTransport.lookup

(

"Prt"

)

)

);

Info<< " Adding to turbulence\n" << endl;

turbulence.set

(

i,

incompressible::RASModel::New

(

UFluid[i],

phiFluid[i],

laminarTransport

).ptr()

27

);

//in original file, not in buoyantSimpleFoam so I left it in.

Info<< " Adding to gFluid\n" << endl;

gFluid.set

(

i,

new uniformDimensionedVectorField

(

IOobject

(

"g",

runTime.constant(),

fluidRegions[i],

IOobject::MUST_READ,

IOobject::NO_WRITE

)

)

);

Info<< " Adding to ghFluid\n" << endl;

ghFluid.set

(

i,

new volScalarField("gh", gFluid[i] & fluidRegions[i].C())

);

Info<< " Adding to ghfFluid\n" << endl;

ghfFluid.set

(

i,

new surfaceScalarField("ghf", gFluid[i] & fluidRegions[i].Cf())

);

pFluid.set

(

i,

new volScalarField

(

IOobject

(

"p",

runTime.timeName(),

fluidRegions[i],

IOobject::NO_READ,

IOobject::AUTO_WRITE

),

p_rghFluid[i] + rhokFluid[i]*ghFluid[i]

)

);

radiation.set

(

i,

28

radiation::radiationModel::New(TFluid[i])

);

setRefCell

(

pFluid[i],

p_rghFluid[i],

fluidRegions[i].solutionDict().subDict("SIMPLE"),

pRefCellFluid[i],

pRefValueFluid[i]

);

if (p_rghFluid[i].needReference())

{

pFluid[i] += dimensionedScalar

(

"p",

pFluid[i].dimensions(),

pRefValueFluid[i] - getRefCellValue(pFluid[i], pRefCellFluid[i])

);

}

}

const fvMesh& mesh = fluidRegions[i];

volScalarField& T = TFluid[i];

volScalarField& kappat = kappatFluid[i];

volScalarField& rhok = rhokFluid[i];

volVectorField& U = UFluid[i];

surfaceScalarField& phi = phiFluid[i];

incompressible::RASModel& turb = turbulence[i];

volScalarField& p = pFluid[i];

radiation::radiationModel& rad = radiation[i];

const label pRefCell = pRefCellFluid[i];

const scalar pRefValue = pRefValueFluid[i];

volScalarField& p_rgh = p_rghFluid[i];

const volScalarField& gh = ghFluid[i];

const surfaceScalarField& ghf = ghfFluid[i];

Once the fluid part has been adapted, we can change in the main file the existing headers. The
thermophysical Model basicRhoThermo is no longer used, the turbulenceModel can be specified as
RASModel, and a TransportModel can be added.
In the Make/options the libraries used in the Boussinesq approach should be added. The flow is
now incompressible so change the file into:

EXE_INC = \

29

-I.. \

-Ifluid \

-Isolid \

-I$(LIB_SRC)/finiteVolume/lnInclude \

-I$(LIB_SRC)/meshTools/lnInclude \

-I$(LIB_SRC)/thermophysicalModels/basic/lnInclude \

-I$(LIB_SRC)/thermophysicalModels/specie/lnInclude \

-I$(LIB_SRC)/thermophysicalModels/basicSolidThermo/lnInclude \

-I$(LIB_SRC)/thermophysicalModels/radiationModels/lnInclude \

-I$(LIB_SRC)/turbulenceModels \

-I$(LIB_SRC)/turbulenceModels/incompressible/turbulenceModel/lnInclude \

-I$(LIB_SRC)/turbulenceModels/incompressible/RAS/lnInclude \

-I$(LIB_SRC)/transportModels \

-I$(LIB_SRC)/transportModels/incompressible/singlePhaseTransportModel \

-I$(LIB_SRC)//turbulenceModels/compressible/turbulenceModel/\

derivedFvPatchFields/turbulentTemperatureCoupledBaffle

EXE_LIBS = \

-lfiniteVolume \

-lbasicThermophysicalModels \

-lbasicSolidThermo \

-lspecie \

-lincompressibleTurbulenceModel \

-lincompressibleRASModels \

-lincompressibleTransportModels \

-lradiationModels

When trying to compile the new solver, a compiling error will be given. This is due to the fact that
the compiler cannot find the header file regionProperties.H as this is part of derived patches for
compressible flows.
In the definitions, we must find a way to couple regions without using compressible approach.

3.3 Conclusions

It still is not clear to me how to adapt the chtMultiRegionSimpleFoam to a chtMultiRegionBoussi-
nesqSimpleFoam as the solver is built (especially the interface fluid-solid) assuming that the fluid is
a compressible flow. All used classes are therefore based on compressible flow.
I now found a thread on the CFD-forum on ”chtIcoMultiRegionFoam - Incompressible version of
chtMultiRegionFoam”. To come to a result, the approach used in this solver can be studied and
may provide some answers. Suggestions are more than welcome!

30

