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Chapter 1

Learning outcomes

In this report, the reader will :

• obtain introduction to combustion solvers in openFOAM and insight into the aachenbomb
case

• learn how to set up the aachenbomb case

• learn how to modify a soot model implemented in the radiation library and use it for the
aachenBomb case

• learn some basic post processing techniques in openFOAM paraView

1



Chapter 2

Implementation of soot model for
aachenBomb tutorial

2.1 Introduction to aachenBomb Tutorial

The aachenBomb case is the simulation of combustion inside a constant volume chamber that
mimics the begining of power stroke in a 4 stroke engine. The experimental setup of the com-
bustion chamber is in RWTH Aachen university, and the operating conditions are in accordance
with the Engine Combustion Network [[1]].

2.1.1 Copy aachenBomb tutorial

The commands to copy the aachenBomb case to run folder of user directory are given below. The
case can be referred to by the reader to check all the files that will be described in the following
sections.

OF30x
cd
mkdir $WM_PROJECT_USER_DIR/
mkdir $FOAM_RUN
cd $WM_PROJECT_DIR/
cp -r tutorials/lagrangian/sprayFoam/aachenBomb/ $FOAM_RUN

All the implementations in this tutorial are done in OpenFOAM-3.0.x. The aachenBomb case
folder has 4 folders, namely - 0, system, constant and chemkin respectively.
The 0 folder contains all the files to set initial values for some of the fields.
The system folder contains the files - blockMeshDict, controlDict, fvSchemes and fvSolution. The
blockMeshDict is a dictionary file containing specification of the geometry in order to create the
mesh. The controlDict file is the control dictionary containing the parameters to control simula-
tion settings for the case. The fvSchemes file has the settings for finite volume schemes used to
perform some mathematical operation on the solved variables (gradient is one example for the
mathematical operations). The fvSolution file contains specific settings of finite volume solver
for some of the variables.
The third folder in the case file is the constant folder. This folder contains all the input files that
are needed to load the libraries, models and sub models used by the case.
The chemkin folder in the case file contains two files. These are the input for chemical reaction
mechanism : chemkin.inp; and the file therm.inp, which includes the input to calculate thermo-
physical properties of the compounds involved in the reaction.

2.1.2 Solver

The sprayFoam Solver The aachenBomb case is solved using the sprayFoam solver. The spray-
Foam solver has the lagrangian particle tracking option. It is a transient PIMPLE type of solver
for solving compressible flows with spray parcels. It can solve for laminar or turbulent cases.
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CHAPTER 2. IMPLEMENTATION OF SOOT MODEL FOR AACHENBOMB TUTORIAL 3

In this tutorial the solver solves for compressible turbulent flow. There is another variant of the
sprayFoam solver for engine applications named engineFoam (Unlike the constant volume case,
it solves for moving mesh mimicing the movement of piston for a real engine case).
The file sprayFoam.c includes the code for sprayFoam solver and it can be found in

$WM_PROJECT_DIR/applications/solvers/lagrangian/sprayFoam

In the file sprayFoam.c the lagrangian particles (in this case it is the fuel particles) are solved
by calling the function parcels.evolve() . Following this, the Eulerian phase equations are
solved (Eulerian phase is the carrier phase which is air in this case) for momentum, mass fraction
and energy respectively. These equations are invoked by the solver. It can be seen in the code as:

#include "UEqn.H"
#include "YEqn.H"
#include "EEqn.H"

Solver options for engine combustion simulations in openFoam The different types of solvers
available for internal combustion engines are summarised in table 2.1. The difference between the
sprayEngineFoam and engineFoam is that the engineFoam solver does not solve for lagrangian
spray parcels. There is no treatment of droplets or fuel injection in the engineFoam solver. The
difference between sprayEngineFoam and coldEngineFoam is that coldEngine foam does not
solve for lagrangian spray and it does not include combustion. The difference between cold-
EngineFoam and engineFoam is that the coldEngineFoam does not solve for combustion.

Table 2.1: Combustion solvers in OpenFOAM
Solver Functionality
sprayFoam constant volume combustion solver for compressible flows involving spray parcels
sprayEngineFoam moving piston engine solver for compressible flows involving spray parcels
coldEngineFoam solver for cold flow(without combustion) for internal combustion engines
engineFoam Solver for combustion in internal combustion engines

2.2 Geometry and initial conditions

As mentioned before the geometry of aachenBomb case is similar to the constant volume com-
bustion chamber in RWTH Aachen. The geometry is a cuboid with height(+ve y-axis) 0.1m and
base 0.02x0.02m (figure 2.1). The injector is placed 5mm below the top of the chamber (at a height
0.995m from the bottom plane) in order to avoid boundary effects on the injected fluid. The fluid
that is injected is n-Heptane (C7H16).
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0.100 

Figure 2.1: Computational domain

The user should run blockMesh utility in order to create the mesh for the above mentioned ge-
ometry . This is done as follows:

run
cd aachenBomb
blockMesh

The initial conditions of the aachenBomb case are summarised in table 2.2

Table 2.2: Initial conditions for aachenBomb case
Gas temperature in the constant volume chamber 800K
Gas pressure in the constant volume chamber 50bar
Gas velocity in the constant volume chamber 0 m/s
Fuel n-Heptane
O2 concentration in the constant volume chamber 23.4%
N2 concentration in the constant volume chamber 76.6%
Injection temperature 320K
ε 90 (uniform internal field, walls:epsilonWallFunction)
k 1 (uniform internal field, walls:kqRWallFunction)

2.3 Input files

The user can see the input files for the case in the constant folder of the aachenBomb case that
was earlier on copied to the run directory. The input files along with their significance, is shown
in table 2.3.
Some of the important input files are discussed below.

sprayCloudProperties The sprayCloudProperties file can be found in the constant folder of
the aachenBomb case. The sprayCloudProperties input file contains the submodels to set up
the lagrangian spray model. The frequently used submodels along with the important input
parameters are now summarised. These submodels can be seen in the section subModels of the
sprayCloudProperties file. Some of the important subModels are discussed below:
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Table 2.3: Input files for the aachenBomb case
Input file Functionality
sprayCloudProperties contains inputs for the lagrangian spray model
thermophysicalProperties contains inputs for the thermophysical models
radiationProperties contains inputs for radiation, absorption- emission and soot models
ChemistryProperties Specifies the chemistry solver and option to switch on/off the chemical

reactions
combustionProperties contains inputs for combustion model and option to switch on/off

combustion
turbulenceProperties contains inputs for turbulence model and option to switch on/off turbulence

sprayCloudProperties: injectionModels injectionModels is one of the options present in spray-
CloudProperties file. This option specifies one of the 9 injector types, geometry, position, flowRatePro-
file of the injector and direction of injection. The flowRateProfile can either be given as an input in
the same file itself in two columns or as a separate file containing the two columns (useful in case
of long duration injections). The two columns are time (s) and mass flow rate (kg/s) respectively.
There are 9 injector model types and they can be found in:

$FOAM_SRC/lagrangian/intermediate/submodels/Kinematic/InjectionModel/

In this tutorial the coneNozzleInjection model is used. This is model used in order to deal with
injection of conical fuel sprays typical in engine combustion situations. The angle of the cone,
location and direction of the injector are specified by user input in the sprayCloudProperties file.

sprayCloudProperties: phaseChangeModel The phaseChangeModel contains the submodel
for evaporation of the spray droplets. There are 3 phase change models and they can be found in

$FOAM_SRC/lagrangian/intermediate/submodels/Reacting/PhaseChangeModel/.

In this tutorial, the liquidEvaporationBoil model is used. The liquidEvaporationBoil model as
the name suggests is used to model the boiling and evaporation of the injected fuel spray. As
it can be seen in the sprayCloudproperties file, there are two input coefficients for the liquidE-
vaporationBoil model. enthalpyTransfer defines how enthalpy is transferred between the liquid
(fuel) and the carrier (surrounding air). The two types of enthalpy transfer are latentHeat and
enthalpyDifference. Following this there is another coefficient call activeLiquids which specifies
the liquid fuel that is being used (n-Heptane in this case).

sprayCloudProperties: breakupModel The breakup model contains the submodels for sec-
ondary breakup of the droplets. There are 7 submodels for secondary breakup and they can be
found in

$FOAM_SRC/lagrangian/spray/submodels/BreakupModel/

In this tutorial, the PilchErdman breakup model is used. By default in the sprayCloudProperties
file, the breakup model is ReitzDiwakar. This should be changed as:

breakupModel PilchErdman;

In the same file, after the coefficients for liquidEvaporationBoilCoeffs section, add the following:

PilchErdmanCoeffs
{

solveOscillationEq yes;
B1 0.375;

B2 0.2274;

}

After the addition, this part should look as follows:
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liquidEvaporationBoilCoeffs
{

enthalpyTransfer enthalpyDifference;

activeLiquids ( C7H16 );
}

PilchErdmanCoeffs
{
solveOscillationEq yes;
B1 0.375;
B2 0.2274;
}

ReitzDiwakarCoeffs
{

solveOscillationEq yes;
Cbag 6;
Cb 0.785;
Cstrip 0.5;
Cs 10;

}

The ReitzDiwakarCoeffs can be removed if the user wants. This will not make a difference as the
compiler now knows that the breakup model is PilchErdman.
The PilchErdman model deals with the secondary breakup of the droplets with time, based on
certain empirical parameters. There are two coefficients for the model namely B1 and B2. These
are constants used in the equations of PilchErdman correlations for determining droplet diameter
and breakup time constant respectively.
It should be noted that the type of breakup model chosen does not have any connection to the
requisites of soot model. The author performed earlier works on droplet breakup study using
PilchErdman model and decided to continue using the same breakup model for this project. But
using the PilchErdman model will make it easier for the reader to cross check the plots discussed
later in the report.

radiationProperties and changes needed to be made to include soot model The radiationProp-
erties file is present in the constant folder of the case directory. It is an input file that contains the
inputs for type of radiation model and the inputs for the radiation submodels. The submodels
of radiation are: absorptionEmissionModel, scatterModel and sootModel. Inside the file, the ra-
diation is by default switched off. The radiation needs to be switched on in order to include the
sootModel. The entire radiationProperties file should be replaced with the following content:

/*--------------------------------*- C++ -*----------------------------------*\
| ========= | |
| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
| \\ / O peration | Version: 3.0.x |
| \\ / A nd | Web: www.OpenFOAM.org |
| \\/ M anipulation | |
\*---------------------------------------------------------------------------*/
FoamFile
{

version 3.0;
format ascii;
class dictionary;
location "constant";
object radiationProperties;

}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

radiation on;

radiationModel P1;

//Number of flow iterations per radiation iteration
solverFreq 10;

absorptionEmissionModel none;
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scatterModel none;

sootModel mymixtureFractionSoot<gasHThermoPhysics>;

mymixtureFractionSootCoeffs
{

nuSoot 0.055;
Wsoot 12;

}

// ************************************************************************* //

Since the sootModel is a submodel in radiationModel, it is called through the radiationModel.
The soot library is also present in the radiation library.Therefore it is needed to switch on the
radiation and specify any one of the radiationModel in order to call the sootModel. In this imple-
mentation, the P1 radiation model is used.
The sootModel used here is mymixtureFractionSootModel.There are two user defined coefficients
for the soot model. The coefficient nuSoot indicated the number of moles of soot in the combus-
tion reaction. The coefficient Wsoot is the molecular weight of soot. Further explanation of soot
model follows in the section: Introduction to soot modelling.

thermophysicalProperties The thermophysical properties provide input for the thermophysi-
cal models. The file is present in
constant/thermophysicalProperties in the case folder.
It provides the inputs - mixture type, the method by which to calculate thermophysical properties
(in this case it is janaf). In the janaf method, all the thermophysical properties -Cp, H and S are de-
rived from NASA polynomials. The NASA polynomials calculate the above mentioned proper-
ties based on NASA coefficients. The input for these coefficients is present in chemkin/therm.dat
in the case folder. This file name and path is specified in the thermophysicalProperties file. It is
suggested to look at [3] for details on these coefficients. Apart from this, the location of chemistry
file chemkin.inp is also specified in the thermophysicalProperties file. In this case the chemistry
file is present in chemkin/chemkin.inp in the case folder. The chemkin.inp file used in this tuto-
rial for combustion of n-Heptane, is shown in figure 2.2

Figure 2.2: chemkin.inp

There are 5 inputs in this file. The three numbers 5.00E+8, 0.0 and 15780 represent A, b and Ea in
the Arrhenius rate equation.

kf = AT b.exp(
−Ea

RT
) (2.1)

, where A is constant for pressure dependence, T is the temperature and Ea is the activation
energy. The Arrhenius rate equation determines the rate of a chemical reaction as a function
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of temperature, pressure and activation energy. The numbers 0.25 and 1.5 denote the forward
reaction order of n-Heptane and oxygen respectively.

2.4 Introduction to soot modelling

The soot model used in this tutorial is based on the mixturefraction soot model existing in Open-
FOAM [2]. This soot model is used in the fireFoam tutorial for combustion of methane.
The aachenBomb tutorial does not use any soot model. Soot model for combustion studies is
required to analyse the pollutant formation. This was a motivation to develop the soot model for
the aachenBomb tutorial. Also there is a further contribution in code to the existing model, that
will be discussed later. However, this is a first step, and further refinements should be made for
detailed studies.
The mixturefraction soot model is a simple state model. It does not solve for transport equation
of soot. Instead it calculates the soot mass fraction based on the CO2 mass fraction at all cells for
each timestep.
The generalised single step reaction including soot production is

nufFuel + (nuOx)Ox = (nuP )P + (nuSoot)soot. (2.2)

nuf, nuOx, nuP and nuSoot are the number of moles of fuel, oxidizer, product and soot respec-
tively. In the case of this tutorial, the single step reaction is

(nuf)C7H16 + (nuOx)O2 = (nuP1)CO2 + (nuP2)H2O + (nuSoot)soot. (2.3)

The number of moles of soot, nuSoot also known as the soot yield is specified by the user. The
mass fraction of soot is calculated as

soot[cellI] = sootMax ∗ (Y CO2[cellI]/Y CO2stoch). (2.4)

Here, sootMax is the maximum soot that can be produced. It is calculated from the single step
reaction for n-Heptane shown in eqn (2.3)

2.5 Addition to the OpenFOAM soot model code

The drawback of the above mentioned soot model is that, it calculates soot at all times when
CO2 is produced. However, soot is produced only in rich conditions of the fuel (when the fuel
exceeds the stochiometric fuel value required for complete combustion). This means that soot is
produced only if :

Y C7H16[cellI] > Y C7H16stoch, (2.5)

where YC7H16 is the mass fraction of the fuel (n-Heptane).
Further details about modification to the code is discussed in the next section.

2.6 Implementation and execution of the code

Implementation Before we can execute the case the following implementations must be done.

1. Ensure that the aachenBomb case is copied to run folder of user directory as explained in
the subsection: Copy aachenBomb tutorial; in the first section.

2. Copy the radiation library to user directory

3. Rename and modify the soot library

4. Compile and dynamically link soot library
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1. Ensure that the aachenBomb case is copied to run folder as explained in the first section

2. Copy the radiation library to user directory Since the soot submodel is present in the radia-
tion library, it is required to copy the radiation library to user directory. This is done as follows:

OF30x
cd $WM_PROJECT_DIR
cp -r --parents src/thermophysicalModels/radiation/ $WM_PROJECT_USER_DIR/
cd $WM_PROJECT_USER_DIR/src/thermophysicalModels/radiation/submodels/sootModel/

3. Rename and modify the soot library We will implement a modified soot model by changing
the existing mixtureFraction model with the addition of equation (2.5). To do this, first we start
by renaming the existing soot model to mymixtureFraction. This is done as follows:

mv mixtureFractionSoot mymixtureFractionSoot
cd mymixtureFractionSoot/
mv mixtureFractionSoot.C mymixtureFractionSoot.C
mv mixtureFractionSoot.H mymixtureFractionSoot.H
sed -i s/mixtureFractionSoot/mymixtureFractionSoot/g mymixtureFractionSoot.H
sed -i s/mixtureFractionSoot/mymixtureFractionSoot/g mymixtureFractionSoot.C
sed -i s/mixtureFractionSoot/mymixtureFractionSoot/g mixtureFractionSoots.C

Once the soot model is renamed, we need to edit the file mymixtureFractionSoot.C and mymix-
tureFractionSoot.H to include the modifications. First we start with mymixtureFractionSoot.C.
We need to open the file mymixtureFractionSoot.C and search for

if (mappingFieldName_ == "none")

From that point on, include the following code:

if (mappingFieldName_ == "none")
{

const label index = reaction.rhs()[0].index;
const label index1 = reaction.lhs()[0].index;
mappingFieldName_ = mixture_.Y(index).name();
mappingFieldName1_ = mixture_.Y(index1).name();

}

const label mapFieldIndex = mixture_.species()[mappingFieldName_];
mapFieldMax_ = mixture_.Yprod0()[mapFieldIndex];
Info << "Value of mappingFieldName_:"<<mappingFieldName_<<endl;
Info << "Value of mapFiledMax_:"<<mapFieldMax_<<endl;

}

// * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //

template<class ThermoType>
Foam::radiation::mymixtureFractionSoot<ThermoType>::˜mymixtureFractionSoot()
{}

// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //

template<class ThermoType>
void Foam::radiation::mymixtureFractionSoot<ThermoType>::correct()
{

const volScalarField& mapField =
mesh_.lookupObject<volScalarField>(mappingFieldName_);

const volScalarField& mapField1 =
mesh_.lookupObject<volScalarField>(mappingFieldName1_);

forAll (mapField1,i)
{

if( mapField1[i] >0.068) // Ystoch=0.068 for fuel n-Heptane, calculated from single step combustion of n-Heptane in air (76.6% N2 and 23.4% O2 by weight)

soot_[i] = sootMax_*(mapField[i]/mapFieldMax_);
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else
soot_[i] = 0;
}

}

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

The addition to the code is explained as follows. In order to add equation (2.5), the mass frac-
tion of fuel should (Y C7H16) should be obtained. The variable index1 stores the index of
fuel which is 0 (The fuel is the first term in left hand side of equation (2.2)). The variable
mappingF ieldName1 stores the name of the fuel which in this case is C7H16 (first term in left
hand side of equation(2.3)). The volume scalar field mapField1 stores the value of fuel mass
fraction in all the cells.

Finally, the variable mappingFieldName1_ must be declared in the file mymixtureFraction-
Soot.H. This is done as follows: search the file mymixtureFractionSoot.H for

word mappingFieldName_;

In the next line enter the following text:

//- Name of the field mapping the fuel
word mappingFieldName1_;

Save the file and exit.

4. Compile and dynamically link soot library Final step to be followed is to compile the soot
library. But, before we compile we need to change the name and location of the executable radi-
ationModels library. This is done as follows

cd $WM_PROJECT_USER_DIR
cd src/thermophysicalModels/radiation/
sed -i s/FOAM_LIBBIN/FOAM_USER_LIBBIN/g Make/files
sed -i s/libradiationModels/libmyradiationModels/g Make/files
sed -i s/mixtureFractionSoot/mymixtureFractionSoot/ Make/files

The last line should also be added. This is because not only have we changed the name soot
model files but also the name of the soot model folder.
Once this is done we can compile the library as follows:

cd $WM_PROJECT_USER_DIR
cd src/thermophysicalModels/radiation/
wclean
wmake libso

At the end of this compilation, the output libmyradiationModels should be placed in the user
library.
The next step is to dynamically link this library so that it can be called by the solver during
execution. This is done as follows.

run
cd aachenBomb
vi system/controlDict

Once in the aachenBomb case folder, and with the controlDict file opened, enter the following as
the last line of code:

libs ("libmyradiationModels.so");
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Execution The steps to be followed before the aachenBomb case with the modified soot model
can be executed are shown below and the explanation of these steps follows:

1. The required files for initial conditions of soot model and radiation model, should be placed
in the 0/ folder of the case directory. These files are: soot and G (for incident radiation).

2. The entry for Gfinal (required by the radiation model) should be included in the fvSolution
file.

3. The thermophysicalProperties file (present in constant folder of case directory) should be
edited to include the inputs for single step reaction.

4. Ensure that the breakup model is changed in sprayCloudproperties file

5. Ensure that the radiationProperties file (input file required by the radiation model present
in constant folder of case directory) is edited as explained in section : Input files; under
the paragraph named: radiationProperties and changes needed to be made to include soot
model.

6. Ensure that the blockMesh command is executed as explained before in section: Geometry
and initial conditions

7. The last step would be to execute the command: sprayFoam to run the aachenBomb case.

The above mentioned steps are now explained in detail.

1. Required files for initial conditions of soot model and radiation model The soot model
requires a soot input folder in the initial conditions. For this, the soot file has to be copied from
the smallPoolFire2D case. This is done as follows:

run
cd aachenBomb
cp -r $FOAM_TUTORIALS/combustion/fireFoam/les/smallPoolFire2D/0/soot 0/

The radiation model requires input folder G(incident radiation). For this, the file has to be copied
from the smallPoolFire2D case. This is done as follows:

run
cd aachenBomb
cp -r $FOAM_TUTORIALS/combustion/fireFoam/les/smallPoolFire2D/0/G 0/

2. The entry for Gfinal The entry Gfinal should also be included in system/fvSolution folder.
It should be included in the solvers after rho. The part to be included is shown:

GFinal
{
solver PCG;
preconditioner DIC;
tolerance 1e-05;
relTol 0.1;
}

3. The thermophysicalProperties file should be edited The combustion of fuel with air is
represented by single step chemical reaction as shown in equation (2.2). The compiler should
know this information. For this purpose we have to edit the thermophysicalProperties file. This
file is present in the constant folder. The entire content should be replaced with the following
code :



CHAPTER 2. IMPLEMENTATION OF SOOT MODEL FOR AACHENBOMB TUTORIAL 12

/*--------------------------------*- C++ -*----------------------------------*\
| ========= | |
| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
| \\ / O peration | Version: 3.0.x |
| \\ / A nd | Web: www.OpenFOAM.org |
| \\/ M anipulation | |
\*---------------------------------------------------------------------------*/
FoamFile
{

version 2.0;
format ascii;
class dictionary;
location "constant";
object thermophysicalProperties;

}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

thermoType
{

type hePsiThermo;
//mixture reactingMixture;
mixture singleStepReactingMixture;
transport sutherland;
thermo janaf;
energy sensibleEnthalpy;
equationOfState perfectGas;
specie specie;

}

CHEMKINFile "$FOAM_CASE/chemkin/chem.inp";

CHEMKINThermoFile "$FOAM_CASE/chemkin/therm.dat";
newFormat yes;

inertSpecie N2;

fuel C7H16;

liquids
{

C7H16
{

defaultCoeffs yes;
}

}

solids
{

// none
}

// ************************************************************************* //

Basically what we have changed is the option reactingMixture to singleStepReactingMixture and
included the option fuel.

Change the breakup model in sprayCloudproperties file Ensure that the breakup model is
changed in the sprayCloudproperties file as explained previously in the section Input files under
the paragraph: sprayCloudProperties: breakupModel.

Ensure steps 5 and 6 are performed as explained in previous sections

Executing the case The case is now ready to be run. The case is executed by the command
sprayFoam while in the case folder.

2.7 Post- processing

creating glyph to observe lagrangian droplets In order to view the lagrangian droplet, first a
VTK file is created. When inside the case folder, execute,
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foamToVTK
paraFoam

Following this, the two VTK files should be loaded in paraFoam (On opening from the File menu,
the VTK folder can be seen. Inside this folder the vtk file for the continuous case can be seen. Nav-
igating one level further into the lagrangian folder and then one more level into the sprayCloud
folder, the vtk file for lagrangian phase can be seen. Both these vtk files should be loaded ). The
setup for making glyph is shown in figure 2.3.

Figure 2.3: screenshot of glyph settings

The glyph created to view the lagrangian droplets is shown in figure 2.4.
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Figure 2.4: glyph of fuel droplets created at t=0.35ms

Alternatively glyph can be viewed without converting to vtk.The ParaFoam version used by the
author is 4.4. This version can handle lagrangian particles without converting to vtk. This was a
simple method with the steps listed as follows:

• ParaFoam should be opened in the case folder.

• Time should be increased by 1 value from 0 to 1. (This is simply because in time 0, the la-
grangian particles are not available)

• In the properties tab, the option apply should be clicked. Doing this will display the inter-
nalMesh.

• In the properties tab, under the option Mesh Parts, by default the option ’internalMesh’ is
selected. This should be changed. The ’internalMesh’ option should be unchecked and
only the ’sprayCloud - lagrangian’ option should be selected. (ensure that all other options
are deselected).

• In the properties tab, under the option Lagrangian Fields, ’d’ should be checked to view par-
ticle diameter.

• The apply option should be clicked in the properties tab. In the dropdown list, the option
’vtkBlockColors’ is selected by default. This should be changed to ’d’, in order to view the
lagrangian particles.

Another tool in paraFoam is ’slice’. Slice is a useful tool to look at the information in a given
plane of interest. In this case it is the slice take normal to the z-plane cutting through the middle
of the geometry. A screenshot of the slice window is shown in figure 2.5.
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Figure 2.5: screenshot of slice tool

A slice is created to view the temperature at t=1.4ms. This is shown in figure 2.6.
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Figure 2.6: slice of temperature at t=1.4 ms.

Finally, a comparison of the soot obtained using the existing OpenFOAM soot model and the
modified soot model, is shown in figure 2.7 and 2.8.

0.0002829

0.0005658

0.0008487

0.000e+00

1.132e-03

soot

Figure 2.7: slice of soot from existing model at t=1.4ms
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0.00026455
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0.00079366

0.000e+00

1.058e-03

soot

Figure 2.8: slice of soot from the modified model at t=1.4ms

The difference between the existing and the modified soot model is clearly seen. The modified
soot model has a thinner region of formation of soot, concentrated more towards the centre. This
is according to what we would expect because, in the centre the fuel has lesse acess to oxygen
than at periphery. This makes it a fuel rich region enabling the production of soot. The soot
formation in the existing model (figure 2.7) is similar to CO2 formation. The CO2 formation at
t=1.4ms is shown in figure 2.9. The fact that the new soot model predicts soot over a thinner

0.047271

0.094541

0.14181

0.000e+00

1.891e-01

CO2

Figure 2.9: slice of CO2 at t=1.4ms

region can also be seen from a plot along the x-axis for y=0.05m(mid-section) and z=0. This plot
was obtained using the sampleDict tool. ref figure 2.10.
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Figure 2.10: soot production versus x distance

2.8 Output Files included for reference

For the purpose of saving time and quickly observing the output, some executables are included
with the tutorial for reference. The executables include the result of running the case with 4
random time steps. One of the timestep included corresponds to the plots displayed in the Post-
processing section. In any case if there is a problem encountered with compiling or executing
the case, the given executables can be used. The executable named V ignesh case.tar.gz has the
following contents:

• aachenBomb folder

• aachenBomb newsoot folder

• libmyradiationModels.so library

Two cases are included in the executable. These are aachenBomb and aachenBomb newsoot re-
spectively. This can be used to observe the difference between the original case and the one
modified with the inclusion of soot model.
The library libmyradiationModels.so is also given in the executable. If the user wants to save
time for compiling, then instead the given library file can be used. This should be copied and
pasted in the user library folder.

2.9 Study Questions

• Which solver is used for constant volume combustion applications?
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• Which file contains the input parameters for sootModel?

• What are the initial files and changes that need to be made before executing the aachenBomb
case?

• In which library is the code for sootModel included?
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