
Solid and Fluid Mechanics

Chalmers University of Technology

CFD with OpenSource software, assignment 3

Tutorial multiphaseInterFoam

For the damBreak4phase case

Written for OpenFOAM-1.7.x

Author:
Patrik Andersson

Peer reviewed by:
Jelena Andric
Anders Rynell

November 5, 2010

Contents

1 Tutorial multiphaseInterFoam 2
1.1 Introduction . 2
1.2 Setup . 3

1.2.1 Getting started . 3
1.2.2 Boundary and initial conditions . 3
1.2.3 Solver setup . 6

1.3 The solver . 9
1.3.1 multiphaseMixture . 9
1.3.2 UEqn.H, pEqn.H and multiphaseInterFoam.C 16

1.4 Running the case . 18
1.5 Post-processing . 19

1

Chapter 1

Tutorial multiphaseInterFoam

1.1 Introduction

This tutorial describes how to setup, run and post-process a case involving severeal incompressible
phases. It also describes the solver used in detail. The multiphaseInterFoam (mpIF) case is setup
as a simple 2D-block (with the standard one cell depth in z-direction), but with a small obstacle
located at the bottom. The geometry consists of four blocks filled with newtonian phases of: water,
oil, mercury and air (see Figure 1.1). All phases are initially located behind membranes which are
then removed simultaniously at t=0 and the fluids collapse onto each other and the obstacle. This
creates a complicated mixture of the four different phases where the interaction between the phases
need to be interpolated and the contact angles calculated. The regular interFoam solver algorithm
is based upon the volume of fluid method (VOF). VOF contains a specie transport equation which is
used to determine the relative volume fraction of the phases or the phase fraction αn (interFoam can
only handle two phases while mpIF can handle n number of phases). mpIF calculates a multiphase
mixture via the multiphaseMixture script, which is derived from transportModel. The solver then
calculates the physical properties of the phase as weighted averages based on αn. The phase fraction
can take any value between 0 and 1. Therefore, the interface between the phases is never sharply
defined. Still, the interface occupies the volume between phases.

Figure 1.1: Geometry for the damBreak4phase tutorial case.

2

1.2. SETUP CHAPTER 1. TUTORIAL MULTIPHASEINTERFOAM

1.2 Setup

This section will cover the steps needed to be taken before running the case. We need to copy it from
the tutorial folder, create the mesh, set the fields and then move on to running the mpIF-solver.
Furthermore this section will cover the case files, and how values that are input are used in the
solver.

1.2.1 Getting started

Copy the multiphaseInterFoam tutorial to the run directory (note that the placement of the case
might differ between versions).

cp -r $FOAM_TUTORIALS/multiphase/multiphaseInterFoam/laminar/\

damBreak4phase $FOAM_RUN

cd $FOAM_RUN/damBreak4phase

The copied folder contains:

/0 – alphaair alphamercury alphaoil alphas alphawater p rgh U

/0.org – backup of original files listed above

/constant – g motionProperties transportProperties turbulenceProperties

subfolder: /polyMesh – blockMeshDict

/system – controlDict decomposeParDict fvSchemes fvSolution setFieldsDict

1.2.2 Boundary and initial conditions

Located in /0 are all the intial conditions for the different phases and a file called phases, which
combines all of the phases so that they can be easier shown at the same time when post-processing
in paraFoam. For example we can take a look at the reference phase air in alphaair.

leftWall

{

type alphaContactAngle;

thetaProperties

(

(water air) 90 0 0 0

(oil air) 90 0 0 0

(mercury air) 90 0 0 0

(water oil) 90 0 0 0

(water mercury) 90 0 0 0

(oil mercury) 90 0 0 0

);

value uniform 0;

}

The static contact angle is set to 90 degrees for all the combinations of mixture, at the left wall.
The same goes for the other walls. The top boundary is open and set as an atmosphere and has no
set contact angle since the fluids should never come in contact with this region. Setting the static
contact angle to 90 degrees is a way of avoiding to use the surface tension force between the wall
and the fluid. This means that, if n̂ denotes the normal to the interface at the wall as:

n̂ = nw cos(θeq)− nt sin(θeq) (1.1)

3

1.2. SETUP CHAPTER 1. TUTORIAL MULTIPHASEINTERFOAM

θeq is the static contact angle set to 90 degrees, nw the unit normal vector to the wall pointing
towards the wall and nt the unit vector tangential to the wall pointing towards the liquid. Then the
interface of the liquid is in fact normal to the wall. If θeq would be less than 90 degrees then this
indicates that the fluid wets the wall [1, p.17].

The folder constant contains, as described in section 1.2.1, the subfolder polyMesh with the dictionary-
file, blockMeshDict, and other files needed for blockMesh. The meshing will not be discussed in this
tutorial since it does not differ from what have already been covered in the interFoam - damBreak-
tutorial. Furthermore, constant contains the initial conditions for g (the gravitation). This is then
read by the solver when creating the fields in the latter part of createFields.H (which can be viewed
by typing: gedit $FOAM_APP/solvers/multiphase/multiphaseInterFoam/createFields.H):

#include "readGravitationalAcceleration.H"

/*

dimensionedVector g0(g);

// Read the data file and initialise the interpolation table

interpolationTable<vector> timeSeriesAcceleration

(

runTime.path()/runTime.caseConstant()/"acceleration.dat"

);

*/

Info<< "Calculating field g.h\n" << endl;

volScalarField gh("gh", g & mesh.C());

surfaceScalarField ghf("ghf", g & mesh.Cf());

Prior to this, createFields.H, has read and set fields for p_rgh, U, rho (ρ), and phi (φ), which is
the relative face-flux field. These fields need to be set, so that the solver solve for them, and weight
them with the cell value.

Properties

Furthermore, constant contains the three property-files motion-, transport- and turbulenceProperties.
motionProperties describes what type of motion the mesh should have. In this tutorial the mesh
has no movement so staticFvMesh is used. In transportProperties the dynamic laminar viscosity, mu
(µ), and the density, rho, are set for the different phases. Since they are all newtonian fluids, we set
the transport model for them to be Newtonian.

phases

(

water

{

transportModel Newtonian;

nu nu [0 2 -1 0 0 0 0] 1e-06;

rho rho [1 -3 0 0 0 0 0] 1000;

}

oil

{

transportModel Newtonian;

nu nu [0 2 -1 0 0 0 0] 1e-06;

rho rho [1 -3 0 0 0 0 0] 500;

4

1.2. SETUP CHAPTER 1. TUTORIAL MULTIPHASEINTERFOAM

}

mercury

{

transportModel Newtonian;

nu nu [0 2 -1 0 0 0 0] 1.125e-07;

rho rho [1 -3 0 0 0 0 0] 13529;

}

air

{

transportModel Newtonian;

nu nu [0 2 -1 0 0 0 0] 1.48e-05;

rho rho [1 -3 0 0 0 0 0] 1;

}

);

To be able to solve the multiphase problem a reference phase is needed. Here, the air has been
chosen, and is derived from the other phases such that they sum up to one. This due to the multi
phase method, volume of fraction, being used (previously mentioned in Section 1.1).

refPhase air;

transportProperties is also used for setting the surface tension for the fluids. It is set to be the same
for all the phases, σ = 0.07N/m

sigmas

(

(air water) 0.07

(air oil) 0.07

(air mercury) 0.07

(water oil) 0.07

(water mercury) 0.07

(oil mercury) 0.07

);

In turbulenceProperties we set what kind of flow that is going to be solved for. In this case its sufficent
to solve for laminar flow. Though, we have the option to choose between three different models (see
Table 1.1 below). Both LESModel and RASModel consist of several subcategories of models. RAS

Simulation type
LESModel Large eddie simulation
RASModel Reynolds average stress
laminar Plain laminar flow

Table 1.1: Possible simulation types

is split into two categories, those for incompressible and those for compressible. LES is divided into:
”Isochoric LES turbulence models” and ”Anisochoric LES turbulence models” (Isochoric = constant
volume). If one is to use any of these models we would need to, as previously mentioned, specify
them in turbulenceProperties, but also create a file in constant. For example if we would like to use
LESModel, then create the file LESProperties and in this file specify which LES model that is to be
used, followed by specification for all the needed variables for that specific model.

5

1.2. SETUP CHAPTER 1. TUTORIAL MULTIPHASEINTERFOAM

1.2.3 Solver setup

This section will cover the needed setup conditions for our multiphaseInterFoam-solver. In system it
is specified where the fields of different phases are to be set, also specify what kind of discretisation
schemes that are to be used in the solver. In setFieldsDict we see the positioning of the phases.

defaultFieldValues

(

volScalarFieldValue alphaair 1

volScalarFieldValue alphawater 0

volScalarFieldValue alphaoil 0

volScalarFieldValue alphamercury 0

volVectorFieldValue U (0 0 0)

);

regions

(

boxToCell

{

box (0 0 -1) (0.1461 0.292 1);

fieldValues

(

volScalarFieldValue alphawater 1

volScalarFieldValue alphaoil 0

volScalarFieldValue alphamercury 0

volScalarFieldValue alphaair 0

);

}

boxToCell

{

box (0.1461 0 -1) (0.2922 0.292 1);

fieldValues

(

volScalarFieldValue alphawater 0

volScalarFieldValue alphaoil 1

volScalarFieldValue alphamercury 0

volScalarFieldValue alphaair 0

);

}

boxToCell

{

box (0 0 -1) (0.1461 0.1 1);

fieldValues

(

volScalarFieldValue alphawater 0

volScalarFieldValue alphaoil 0

volScalarFieldValue alphamercury 1

volScalarFieldValue alphaair 0

);

}

);

The reference phase, air, is set to occupy the whole domain, whereas the other phases occupy the
lower left corner, as seen in Figure 1.1. In those boxes, air is set to zero. The new phase is then
given the cell value one so that it is now the only fluid in those cells. In fvSchemes we set so that
we use Euler scheme (first order, bounded, implicit) as default for our descretization in time.

6

1.2. SETUP CHAPTER 1. TUTORIAL MULTIPHASEINTERFOAM

ddtSchemes

{

default Euler;

}

For gradSchemes (the gradient ∇) Gauss linear scheme is set as default and to be used for U and
gamma.

gradSchemes

{

default Gauss linear;

grad(U) Gauss linear;

grad(gamma) Gauss linear;

}

For the divergence schemes there is no default setting, instead we specify for each variable which
scheme needs to be used. For the divergence of rho*phi and U a Gauss Upwind scheme (up-
wind differencing) is used. For the div(ϕ,α) Gauss vanLeer scheme is used and for
div(ϕ_{rb},α) we use Gauss interfaceCompression.

divSchemes

{

div(rho*phi,U) Gauss upwind;

div(phi,alpha) Gauss vanLeer;

div(phirb,alpha) Gauss interfaceCompression;

}

For the laplacian (∇2) Gauss linear corrected scheme is used, where ”corrected” means that it is
numerically unbounded, second order and conservative.

laplacianSchemes

{

default Gauss linear corrected;

}

interpolationSchemes

{

default linear;

}

snGradSchemes

{

default corrected;

}

Fields for which the flux is needed, that is pcorr, p_rgh and alpha for the different phases.

fluxRequired

{

default no;

pcorr;

p_rgh;

"alpha.*";

In fvSolution where the equation solvers, algorithms and tolerances are set, we have the following
setup:

7

1.2. SETUP CHAPTER 1. TUTORIAL MULTIPHASEINTERFOAM

solvers

{

pcorr

{

solver PCG;

preconditioner

{

preconditioner GAMG;

tolerance 1e-05;

relTol 0;

smoother GaussSeidel;

nPreSweeps 0;

nPostSweeps 2;

nBottomSweeps 2;

cacheAgglomeration off;

nCellsInCoarsestLevel 10;

agglomerator faceAreaPair;

mergeLevels 2;

}

tolerance 1e-05;

relTol 0;

maxIter 100;

}

p_rgh

{

solver GAMG;

tolerance 1e-07;

relTol 0.05;

smoother GaussSeidel;

nPreSweeps 0;

nPostSweeps 2;

nFinestSweeps 2;

cacheAgglomeration on;

nCellsInCoarsestLevel 10;

agglomerator faceAreaPair;

mergeLevels 1;

}

p_rghFinal

{

solver PCG;

preconditioner

{

preconditioner GAMG;

tolerance 1e-07;

relTol 0;

nVcycles 2;

smoother GaussSeidel;

nPreSweeps 0;

nPostSweeps 2;

nFinestSweeps 2;

cacheAgglomeration on;

nCellsInCoarsestLevel 10;

8

1.3. THE SOLVER CHAPTER 1. TUTORIAL MULTIPHASEINTERFOAM

agglomerator faceAreaPair;

mergeLevels 1;

}

tolerance 1e-07;

relTol 0;

maxIter 20;

}

"(U|alpha)"

{

solver smoothSolver;

smoother GaussSeidel;

tolerance 1e-08;

relTol 0;

nSweeps 1;

}

}

PISO

{

nCorrectors 4;

nNonOrthogonalCorrectors 0;

nAlphaCorr 4;

nAlphaSubCycles 4;

cycleAlpha yes;

cAlpha 2;

}

relaxationFactors

{

U 1;

}

The GAMG-solver is an abbrevation for ”Generalised geometric-algebraic multi-grid”. This is a fast
method since it, in rough terms, first solves for the user-specified coarse grid and then refines it
in stages (more info availiable in the OpenFoam-userguide [2]). It is in this case used as solver for
p_rgh. It is also used as a preconditioner for p_corr and p_rghFinal. p_corr and p_rghFinal

both uses PCG as solver method (where PCG is a linear solver for symmetric matrices). U|alpha,
which is the velocity field for the diferrent faces, is solved by using smoothSolver, where GaussSeidel
is chosen as a smoother. For further explanation of the solver settings please read Chapter 4.5
”Solution and algorithm control” in the above mentioned userguide.

1.3 The solver

This section will cover a more detailed of the solver code for multiphaseInterFoam. We will now
take a closer look at some of the files relevant for the actual solver: multiphaseInterFoam.C, multi-
phaseMixture.H, multiphaseMixture.C, UEqn.H, PEqn.C, phases.C, and phases.H

1.3.1 multiphaseMixture

Now it makes sense to start with the multiphaseMixture files, which is where the weighting by al-
pha and the contact-angle comes into play. The description in the multiphaseMixture.H states that:
”Incompressible multi-phase mixture with built in solution for the phase fractions with interface com-
pression for interface-capturing. Derived from transportModel it can be used in conjunction with the

9

1.3. THE SOLVER CHAPTER 1. TUTORIAL MULTIPHASEINTERFOAM

incompressible turbulence models. Surface tension and contact-angle is handled for the interface
between each phase-pair.”
As mentioned in Section 1.2.2 the user is free to choose turbulence model which the description here
clearly states. The surface tension and contact-angle will be discussed and explained further down
in this section.

The phases are first handled in the files phase.C and phase.H located in the multiphaseMixture

folder. Here the description states that: Single incompressible phase derived from the phase-fraction.
Used as part of the multiPhaseMixture for interface-capturing multi-phase simulations

In other words, one phase is read at the time, and its viscosity-model for nu (ν the kinematic
laminar viscosity) and rho, ρ. This was previously discussed when reviewing the case-folders. Also,
the code is here define the phase its initial volVectorField for U and surfaceScalarField for phi. In
multiphaseMixture.H the code intitially sets the selected transport model and then moves forward
by defining interfacePairs for the mixture of phases. This can be seen in the Constructor and the
Friend Operator part of the code, listed below.
(gedit $FOAM_SOLVERS/multiphase/multiphaseInterFoam/multiphaseMixture/multiphaseMixture.H)

// Constructors

interfacePair()

{}

interfacePair(const word& alpha1Name, const word& alpha2Name)

:

Pair<word>(alpha1Name, alpha2Name)

{}

interfacePair(const phase& alpha1, const phase& alpha2)

:

Pair<word>(alpha1.name(), alpha2.name())

{}

// Friend Operators

friend bool operator==

(

const interfacePair& a,

const interfacePair& b

)

{

return

(

((a.first() == b.first()) && (a.second() == b.second()))

|| ((a.first() == b.second()) && (a.second() == b.first()))

);

}

friend bool operator!=

(

const interfacePair& a,

const interfacePair& b

)

{

return (!(a == b));

}

};

10

1.3. THE SOLVER CHAPTER 1. TUTORIAL MULTIPHASEINTERFOAM

In the ”Friend Operators”-part it is seen that different combinations/scenarios of interface-pairs are
written. In the first case the two pairs, a and b, are the same. Then after the or (||) statement we
see that the pairing is switched, but still containing the same pair of alphas. In the last scenario they
are not equal. Furthermore, the multiphaseMixture.H code defines member data and corresponding
member functions such as those seen in Table 1.2 below.

Private data terms
refPhase The phase chosen as reference
rhoPhi The volumetric flux
sigmatable, σ The stresses for the interface pair
deltaN Stabilisation for the normalisation of the interface normal
alphaTable, α Phase-fraction field table for multivariate discretization

from multivariateSurfaceInterpolationScheme

Member functions Returns the:
phases phases
U velocity
phi, φ, rhophi, ρφ volumetric flux
rho, ρ mixture density
mu, µ dynamic laminar viscosity
muf, µf face-interpolated dynamic laminar viscosity
nu, ν kinematic laminar viscosity
nuf, νf face-interpolated kinematic laminar viscosity
nearInterface Indicator of the proximity of the interface-field, values are 1 near and 0 away from the interface
solve Solve for the mixture phase-fractions
correct Correct the mixture properties
read Read base transportProperties dictionary

Table 1.2: multiphaseMixture.H

multiphaseMixture.C

To view type:
gedit $FOAM_SOLVERS/multiphase/multiphaseInterFoam/multiphaseMixture/multiphaseMixture.C

In the solve part of multiphaseMixture.C we have the iteration loops for ρ, µ, µf .There are also loops
for ν, which is µ

ρ , and one loop for the faceinterpolated νf . The loop for the surfacetensionforce (ref-

ered to as stf in the code) is a bit more extensive, here σ for the interfacepair and an interpolation
is performed between the two phases. The surface tension force is defined as:

Fs = σ

(
∇ ·
(
∇α
|∇α|

))
(∇α) (1.2)

where

∇α = n, the vector normal to the interface
σ = surface tension coefficient

In the code this is represented by:

stf += dimensionedScalar("sigma", dimSigma_, sigma())

fvc::interpolate(K(alpha1, alpha2))

(

fvc::interpolate(alpha2)*fvc::snGrad(alpha1)

11

1.3. THE SOLVER CHAPTER 1. TUTORIAL MULTIPHASEINTERFOAM

- fvc::interpolate(alpha1)*fvc::snGrad(alpha2)

);

where the curvature:

K(alpha1,alpha2) = −∇ ·
(
∇α
|∇α|

)
(1.3)

and sigma:
dimensionedScalar("sigma", dimSigma_, sigma()) = σ (1.4)

and the last part within the paranthesis represent ∇α.
Moving on we have the Piso-loops for alpha in the code (see Table 1.3 below). Compared to the
two-phase case for interFoam we now have a different setup. For example, there are four subcycles
for each alpha, this gives that alpha is solved in one fourth length of the time-step.

Piso-loops fvSolution settings Description
nAlphaSubCycles 4 Number of subcycles for αn for each timestep
nAlphaCorr 4 Number of correction for α, to improve quality of

solution via fixed point iteration
cycleAlpha yes Cycling of alpha turned on
cAlpha 2 Compression of the interface, above one equals to enhanced compression of the interface.

Table 1.3: Piso-loops in multiphaseMixture.C

Contact angle

A large and interesting section in multiphaseMixture.C is the correction for the boundary condition.
Done on the unit normal nHat on walls, in order to produce a correct contact angle here. The
dynamic contact angle is calculated by using the component of the velocity U on the direction of the
interface, parallell to the wall. Before going in to this we need to take a quick look at the definitions
of the angles in alphaContactAngleFvPatchScalarField.C.

class interfaceThetaProps
theta0 θ0 (θC) Equilibrium contact angle
uTheta uθ Dynamic contact angle velocity scale
thetaA θA Limiting advancing contact angle
thetaR θR Limiting receeding contact angle

Table 1.4: Angles

In Figure 1.2 [3] above, we see the contact angle of a droplet which will represent our phase. γSL
denotes the solid liquid energy, γSG the solid vapor energy and γLG the liquid vapor energy, i.e. the
surface tension. This is governed by Youngs equation (1.5) which will be satisfied at equilibrium.

0 = γSG − γSL − γLG cos(θC) (1.5)

The angle θC is dependent on the highest (advancing) contact angle θA and the lowest (receding)
contact angle θR, written as:

θC = arccos

(
rA cos(θA) + rR cos(θR)

rA + rR

)
(1.6)

12

1.3. THE SOLVER CHAPTER 1. TUTORIAL MULTIPHASEINTERFOAM

Figure 1.2: Contact angle and interface energies

where

rA =
3

√
sin3(θA)

2− 3 cos(θA) + cos(θA)
(1.7)

rR =
3

√
sin3(θR)

2− 3 cos(θR) + cos(θR)
(1.8)

θA is the contact angle when increasing the volume of, for example, the droplet. θR is the contact
angle when decreasing the volume. In other words, when there is a relative motion of the droplet
over a solid surface or another phase-interface, a different angle than the equilibrium contact angle
will appear. It depends on the direction of the previous motion, that is, if it was the advancing
or receeding motion of the surface/interface (see Figure 1.3 for explanation) [4, p.342]. The data

Figure 1.3: Schematic of equilibrium contact angle: θ (a) stationary liquid, (b) liquid flows upward,
(c) liquid flows downward.

is grouped into the member function thetaProps for the interface-pairs. If we now focus on the
multiphaseMixture.C code again, it calculates the dynamic contact angle if required, i.e if uθ is not
small (which is a number set by OpenFOAM somewhere in the order of 10 to the power of minus
six:

if (uTheta > SMALL)

{

scalar thetaA = convertToRad*tp().thetaA(matched);

scalar thetaR = convertToRad*tp().thetaR(matched);

// Calculated the component of the velocity parallel to the wall

vectorField Uwall =

U_.boundaryField()[patchi].patchInternalField()

13

1.3. THE SOLVER CHAPTER 1. TUTORIAL MULTIPHASEINTERFOAM

- U_.boundaryField()[patchi];

Uwall -= (AfHatPatch & Uwall)*AfHatPatch;

// Find the direction of the interface parallel to the wall

vectorField nWall =

nHatPatch - (AfHatPatch & nHatPatch)*AfHatPatch;

// Normalise nWall

nWall /= (mag(nWall) + SMALL);

// Calculate Uwall resolved normal to the interface parallel to

// the interface

scalarField uwall = nWall & Uwall;

theta += (thetaA - thetaR)*tanh(uwall/uTheta);

}

The first section converts limiting angles to radians. Then proceeds with calculating velocity parallel
to the wall such that: Uwall equals the boundary patch field with the internal patch field excluded.
Then subtracts the unitvector on each cellface from the wall velocity: Uwall = Uwall - (AfHatPatch
· Uwall)*AfHatPatch. The code then finds the direction of the interface parallel to the wall (nwall),
normalises it and calculates uwall:

uwall = nwall · Uwall (1.9)

Then finally, corrects the angle θ by

θ = (θA − θR) ∗ tanh
(
uwall
uθ

)
(1.10)

This new angle is then used to reset nHatPatch (the direction of the contact interface) so that it
corresponds to the contact angle. Finally, we are ready for the alpha-equation which will be used
when calculating the new volumetric flux (φ). The equation reads:

dα

dt
+mvconvection− > fvmdiv(φ, α) (1.11)

Where fvmdiv is the divergence of the flux and the α-field. The flux calculated from the alpha-
equation is later used for rhophiaa_. Now the last stages of the code for this will be gone through.

surfaceScalarField phic = mag(phi_/mesh_.magSf());

phic = min(cAlpha*phic, max(phic));

Here phic is defined, which is the minimum of φ for the current cell times the interface-compression
cAlpha and the minimum of the maximum value of the flux, φ.

for (int gCorr=0; gCorr<nAlphaCorr; gCorr++)

{

phase* refPhasePtr = &refPhase_;

if (cycleAlpha)

{

PtrDictionary<phase>::iterator refPhaseIter = phases_.begin();

for(label i=0; i<nSolves%phases_.size(); i++)

{

++refPhaseIter;

}

14

1.3. THE SOLVER CHAPTER 1. TUTORIAL MULTIPHASEINTERFOAM

refPhasePtr = &refPhaseIter();

}

phase& refPhase = *refPhasePtr;

volScalarField refPhaseNew = refPhase;

refPhaseNew == 1.0;

rhoPhi_ = phi_*refPhase.rho();

forAllIter(PtrDictionary<phase>, phases_, iter)

{

phase& alpha = iter();

if (&alpha == &refPhase) continue;

fvScalarMatrix alphaEqn

(

fvm::ddt(alpha)

+ mvConvection->fvmDiv(phi_, alpha)

);

Above the alpha-equation (1.11) is seen.

forAllIter(PtrDictionary<phase>, phases_, iter2)

{

phase& alpha2 = iter2();

if (&alpha2 == &alpha) continue;

surfaceScalarField phir = phic*nHatf(alpha, alpha2);

surfaceScalarField phirb12 =

-fvc::flux(-phir, alpha2, alphacScheme);

alphaEqn += fvm::div(phirb12, alpha, alphacScheme);

}

alphaEqn.solve(mesh_.solver("alpha"));

rhoPhi_ += alphaEqn.flux()*(alpha.rho() - refPhase.rho());

Here a couple of terms are defined. First, phir which equals our previous minimum value, times the
cell face unit interface normal flux for alpha and alpha2.
surfaceScalarField phir = phic*nHatf(alpha, alpha2);

Secondly phirb12 which takes the flux of phic and alpha2.
surfaceScalarField phirb12 = -fvc::flux(-phir, alpha2, alphacScheme);

Then the divergence of phirb12, and alpha is added to the the alphaEqn. Now the alphaEqn.flux

can finally be multiplied with our calculated ρ for our given alpha and subtracted by ρref . ρref
denotes the density for the reference phase.

Info<< alpha.name() << " volume fraction, min, max = "

<< alpha.weightedAverage(mesh_.V()).value()

<< ’ ’ << min(alpha).value()

<< ’ ’ << max(alpha).value()

15

1.3. THE SOLVER CHAPTER 1. TUTORIAL MULTIPHASEINTERFOAM

<< endl;

refPhaseNew == refPhaseNew - alpha;

}

refPhase == refPhaseNew;

Info<< refPhase.name() << " volume fraction, min, max = "

<< refPhase.weightedAverage(mesh_.V()).value()

<< ’ ’ << min(refPhase).value()

<< ’ ’ << max(refPhase).value()

<< endl;

}

calcAlphas();

}

The reference phase is then set to its new alpha-value (fraction value) so that it is now updated and
can be used for further calculations.

1.3.2 UEqn.H, pEqn.H and multiphaseInterFoam.C

The multiphaseInterFoam.C code is relatively short. Since the major solving is done in previously
discussed multiphaseMixture section. The code solves for UEqn.H and pEqn.H by using the calcu-
lated mixture density ρmix. Below the code for multiphaseInterFoam.C is presented.

Info<< "\nStarting time loop\n" << endl;

while (runTime.run())

{

#include "readPISOControls.H"

#include "readTimeControls.H"

#include "CourantNo.H"

#include "alphaCourantNo.H"

#include "setDeltaT.H"

runTime++;

Info<< "Time = " << runTime.timeName() << nl << endl;

mixture.solve();

rho = mixture.rho();

#include "UEqn.H"

// --- PISO loop

for (int corr=0; corr<nCorr; corr++)

{

#include "pEqn.H"

}

turbulence->correct();

runTime.write();

16

1.3. THE SOLVER CHAPTER 1. TUTORIAL MULTIPHASEINTERFOAM

Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"

<< " ClockTime = " << runTime.elapsedClockTime() << " s"

<< nl << endl;

}

Info<< "End\n" << endl;

return 0;

}

As seen, the mixture.solve() calls the previously described code and ρ is set to the calculated mixture
rho, ρmix. Now the U- and P-equation can be solved. Firstly, the U-equation:(

d

dt
(ρ, U) +∇ · (ρφmix, U)−∇2(µEff , U)−∇U · ∇µEff

)
implicit

− (∇ · (µEff))explicit (1.12)

where:

µEff = µf + interpolate(ρ*νt)
µf = mixture.muf()
νt = turbulent viscosity

Furthermore, UEqn.H contains a boolean statement for momumentum predictor, which is often
useful for the convergence, and the performance of the code. If true, it solves for equation (1.12)
which is the momentum equation. See below.

UEqn = (Fs − g ∗ ∇ρexplicit −∇Prgh,explicit) ∗ cellfacevectors (1.13)

where:

Fs = the surface-tension-force derived from the mixture (see Equation 1.4)
∇ = facenormal-gradient

The momentum equations are firstly solved using the pressure field, from previous timestep. The
solution of the momentum equation gives a new velocity field which does not satisfy the continuity
conditions.Moving on in multiphaseInterFoam-code, to the piso-loop for the solving and correcting of
the P-equation. When looking into the code for the p-equation, there are some steps that are unclear
and we will for the time being leave them be. For example the purpose of the ddtphicorr operation at
the very beginning of the code would be interesting to explain further since the information available
this parameter are limited. What is know, is that the pressure corrector is looped a set number of
times with ”ncorr” (see [5]), where ”ncorr” is set in the FvSolution-file to equal 4. In FvSolution we
also set, nNonOrthogonalCorrectors to equal zero. This means that the solution has been judged
stable enough to be able to solve without any non-orthogonal correction, which is fairly obvious
since our mesh is purely orthogonal. The pressure corrector loop works as follows. The calculated
velocities from Ueqn.H are used to assemble H(u) a velocity field without the pressure gradient [5].
This is then used to calculate the pressure-equation giving an new pressure field. Also calculated, is
a new volumetric flux field consistent with the new pressure field. The new pressure field is used in
an explicit velocity correction for the velocity field such that it now also matches the pressure field.

17

1.4. RUNNING THE CASE CHAPTER 1. TUTORIAL MULTIPHASEINTERFOAM

Summarizing the solution steps

Onno Ubbink summarizes the solution steps in a short and elegant way in his Phd work with the
title: ”Numerical prediction of two fluid systems with sharp interfaces” (see [1, p. 27]). The solution
sequence is as follows:
1. Initialise all the variables.
2. Calculate the Courant number and adjust the time step if necessary.
3. Solve the equation by using the old time level’s volumetric fluxes.
4. Use the new values together with the constitutive relations to obtain an estimate for the new
viscosity, density and the face densities.
5. Use the above values to do a momentum prediction and continue with the PISO algorithm.
6. If the final time has not yet been reached advance to the next time level and return to step 2.

1.4 Running the case

We will now run the case without any modifications so that the results can be viewed and evaluated.
Go to the case-folder in the run directory and execute blockMesh. When done, type setFields.
This utility now sets the specified α-values for the different phases in their respective boxes as
previously described in section 1.2.3 (see also figure 1.1). Now it is time to run the case, type:
multiphaseInterFoam | tee log

18

1.5. POST-PROCESSING CHAPTER 1. TUTORIAL MULTIPHASEINTERFOAM

1.5 Post-processing

Now the results can finally be viewed by typing paraFoam. The best way to visualize it is by simply
choosing the alphas parameter to visualize the 4 different phases.

Figure 1.4: Setup in paraFoam.

Click apply, and then press the play button to see how the three liquids fall over the obstacle
and finally settle down in layers corresponding to their densitys. Mercury on the bottom, oil in the
middle, water on top and air above.

In order to investigate the solution further, the visualization of the velocity field with solid colored
glyphs is a good idea. This gives the user a clearer picture of how the movement is propagating in
the phases.

Figure 1.5: The 4 phases, demonstrated with the alphas-field and
glyphs

19

Bibliography

[1] O. Ubbink, “Numerical prediction of two fluid systems with sharp interface,” tech. rep., De-
partment of Mechanical Engineering, London, England, 1997. http://powerlab.fsb.hr/ped/

kturbo/OpenFOAM/docs/OnnoUbbinkPhD.pdf.

[2] OpenFoam documentation, “User guide, doxygen.” http://www.openfoam.com/docs/user/,
October 2010.

[3] Wikipedia, “Contact angle.” http://en.wikipedia.org/wiki/Contact_angle, October 2010.

[4] Amir Faghri, Yuwen Zhang, Transport phenomena in multiphase systems. Academic Press, 2006.

[5] H. Nilsson, “implementapplication.” http://www.tfd.chalmers.se/~hani/kurser/OS_CFD/

implementApplication.pdf, September 2010.

20

