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Notation & Nomenclature

Tensor Notation

From the beginning it seems reasonable and rational to adopt a tensor notation which
is compact yet unambitious, in order to understand tensors as entities in its own right,
rather than a list of scalar components. Consequently, any tensor operation should be
perceived as an operation on the entire tensor entity rather than a series of operations
on its components [1].

That said, it is up to the tensor notation to encapsulate and actively support the
concept of a tensor as an entity in its own right. Therefore, the following tensor
notation shall be used henceforth and referred to as Gibbs Tensor Notation [2]:
generally, lightface italic Roman symbols denote scalar quantities, whereas boldface
symbols represent vector and tensor quantities1. Furthermore, it is convenient to
distinguish boldface Roman symbols for vectors and boldface Greek symbols for
tensor quantities wherever possible. However, this rule is not adhered to religiously
[3].

The Gibbs notation is a compact and intuitive notation – as has been required
initially. Moreover, it is devoid of any reference to the underlying coordinate system.
A few examples shall suffice to accentuate the subtle distinction compared to another
common notation – the Cartesian Tensor Notation (or Index Tensor Notation) – table
0.1. The interested reader is referred to [4, 5] for more details on tensor calculus.

Note in passing, that the author has omitted the use of parenthesis in the Gibbs
Notation for the sake of readability: conveniently one could enclose any multiplication
operation (or sums thereof) by parenthesis to indicate the type of quantity produced
by the multiplication, i.e., ( ) =̂ scalar, [ ] =̂ vector and { } =̂ tensor.
1 Of course, scalar and vector quantities are to be regarded as zero-rank and first-rank tensors,

respectively. However, a second-rank tensor is often colloquially termed ’tensor’ since the
occurrence of higher order tensors is fairly rare. Moreover, tensors of rank zero and one are
commonly known as scalars and vectors [1]. Typical examples in fluid dynamics are: shear
rate, energy and time (as examples for scalar quantities); velocity, momentum and acceleration
(as examples for vector quantities); stress and rate-of-strain (as examples for tensor quantities).
Hence, we shall stick to this differentiation throughout this thesis.
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Table 0.1: Tensor Operations – Gibbs vs. Cartesian Notation [4].

Gibbs Notation Expanded Notation in Terms
of Unit Vectors & Unit Dyads

Cartesian Tensor Notation

v•w
∑
i

viwi viwi

v×w
∑
i

∑
j

∑
k

εijkeivjwk εijkeivjwk

∇v ≡ ∇⊗ v (a)
∑
i

∑
j

∂

∂xi
vjeiej ∂ivj

∇•τ
∑
i

∑
j

ei
∂

∂xj
τji ∂jτji

∇2s(= ∆s) (b)
∑
i

∂2

∂xi2
s ∂i∂is

∇2v ≡ ∇•∇v
∑
j

ej

(∑
i

∂2

∂xi2
vj

)
ej∂i∂ivj

(a) Note that the dyadic product sign in ∇ ⊗ v will be dropped throughout this thesis denoting
∇v instead. The vector differential operator ∇ is called Nabla operator and defined as ∇ ≡
e1

∂
∂x1

+ e2
∂
∂x2

+ e3
∂
∂x3

.
(b) The vector differential operator ∇2 = ∆ is called Laplacian operator and defined as ∇2 ≡
∇•∇ = ∂2

∂x12 + ∂2

∂x22 + ∂2

∂x32 .
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Finite Volume Notation

The Finite Volume Method is a widely known and well-established method for the
numerical solution of a variety of problems in continuum mechanics. However,
the continuing increase in the complexity of these problems and the complexity
of the corresponding numerical algorithms for their solution are found to cause
severe problems when transferring ideas about details on the solution algorithm (e.g.,
discretization practices) between researchers in a clear yet compact way [6].

Hence, a concise, unambitious but still compact and intuitive notation to (re)present
single finite-volume operations as well as entire solution algorithms is a severe need.
As the Gibbs Notation for tensors is devoid of any reference to the underlying
coordinate system, so should a Finite Volume Notation be made independent from
the underlying code and mesh topology. In the following, the Finite Volume Notation
of Weller shall be described in considerable detail, as it appears to fulfill the above
requirements and is, thus, used in this thesis. His concept is set out below and
repeated here for convenience; the interested reader is referred to [6, 7].

In the Finite Volume Method both interpolating fields from the cell-centers to the
cell-faces and averaging fields over some computational region2 are fundamental.
Moreover, it appears necessary to introduce different methods in order to ensure
boundedness and numerical stability. Thus, both interpolating and averaging proce-
dures need to be denoted in a sufficiently detailed notation providing all specifications
necessary for implementation:

face interpolations To support various differencing schemes a simple extensible no-
tation is suggested, in order to specify the scheme itself along with all required
parameters. Herein, the subscript f denotes the face interpolation. Other cru-
cial information needed by the scheme – such as interpolation weighting factors
(based on the face flux) or scheme-specific blending/switching coefficients – are
provided in parentheses.
E.g., Φf simply denotes the face value of Φ obtained by central differencing,
whereas Φf(F,S,γ) generally describes the face value of Φ obtained using scheme
S, which utilizes the face flux F and a specific coefficient γ.

averaging procedures In order to specify the computational stencil q over which
the averaging is performed, a pertinent subscript is assigned to the averaging
operator. It is convenient to directly denote a particular operator to indicate
the corresponding numerical stencil. I.e., the averaging is performed on the
basis of the computational stencil of the operator, provided as an subscript to
the averaging operator.

2 commonly referred to as computational stencil or molecule
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E.g., in general the average of a field Φ over the computational stencil q is
denoted by 〈Φ〉q. If the average is to be based on the computational molecule
of the ∇ operator, for instance, this is represented by 〈Φ〉∇.

In the Finite Volume Method terms arising from differential operators generally can
be treated either explicitly or implicitly. The Finite Volume Notation of Weller
enables to distinguish between both treatments:

explicit differential operators In general, differential operators are denoted as pre-
scribed by the Gibbs Tensor Notation without any further modification.

implicit differential operators The discretized expression [Φ] that arises from an im-
plicit differential operator L generally involves matrix coefficients (subscript A)
and source contributions (subscript S). Being applied on Φ the encapsulation
of both is denoted as vL [Φ]w ≡ vL [Φ]wAΦ− vL [Φ]wS .
Similarly, the corresponding diagonal, upper and lower part of the matrix is
denoted as vL [Φ]wD, vL [Φ]wU and vL [Φ]wL, respectively. Moreover, the ’H’
part is defined as vL [Φ]wH ≡ vL [Φ]wDΦ − vL [Φ]w (providing an approximate
solution to vL [Φ]w = 0 by Φ = vL [Φ]wH/vL [Φ]wD 3).

A few examples shall suffice to accentuate the merits of this notation compared to
the more common index notation – table 0.2. For more details the reader is referred
to chapter 4.

3 Note, that the inversion of the diagonal part of the matrix, vL [Φ]w−1
D has been denoted as

1/vL [Φ]wD for reasons of a better readability.
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Table 0.2: Finite Volume Notation according to Weller [6].

implicit differential operators

rate of change
1
∂[ρφ]
∂t

9
convection term

1
∇•
(
F [φ]

f(F,S,γ)

)9
diffusion term v∇•(Γ∇[φ])w

linear part of source term vSp [φ]w

explicit differential operators

temporal term ∂ρφ
∂t

divergence term ∇•(ρUφf(ρU,S,γ))

laplacian term ∇•(Γ∇φ)

constant part of source
term

Su
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Nomenclature

The following holds the nomenclature that has been adopted within this thesis. The
list of used symbols is provided along with a short description. Dimensions are given
in terms of SI units. Wherever the dimensions of an arbitrary quantity are found to
be case-specific, the corresponding entry for its units has been left empty.

Roman Symbols

a interfacial area density m2

m3

a matrix coefficient

A square matrix

a general vector property

c molar species/component concentration kmole
m3

c , C constant/coefficient

d diameter m

d delta vector, vector between P and N m

D molar diffusivity m2

s

D rate-of-deformation(strain) tensor 1
s

D momentum drift-flux tensor m2

s2

E event space

f face

f linear interpolation factor

f phase distribution function (signed distance
function from the interface) m

F face mass flux kg
s

F force kg m
s2
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g prescribed face normal gradient of quantity Φ

g acceleration vector due to gravity m
s2

G filter kernel (operator)

I indicator function –

I identity tensor –

l length m

L length m

M
interfacial momentum transfer term (force den-
sity)

kg
m2 s2

n number density 1
m3

n unit normal vector –

N control volume (neighboring to P )

N number/quantity –

O order of truncation term –

p pressure kg
m s2

P
control volume (usually subject of examina-
tion)

P process

r source

r spatial position vector m

r source vector

R molar reaction rate kmole
m3 s

R Reynolds stress tensor m2

s2

R space domain
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S control surface m2

S source term

S spatial terms (time integration)

S face area vector m2

t time s

T averaging time interval s

t unit tangential vector –

T time domain

U velocity vector m
s

V (control/averaging) volume m3

x mass fraction of a species/component kg
kg

x spatial position vector m

Greek Symbols

α volumetric phase fraction / phase volume frac-
tion

m3

m3

β parameter in the Gamma differencing scheme –

δ interfacial width m

η relative spatial position vector m

γ volumetric phase fraction / phase volume frac-
tion of phase ϕ

m3

m3

γ coefficient in differencing scheme –

Γ diffusivity

κ curvature 1
m

µ dynamic viscosity kg
m s
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µ particular realization in an ensemble of events –

φ arbitrary general scalar quantity

Φ arbitrary general intensive quantity

Ψ second arbitrary general intensive quantity

ρ density kg
m3

σ total stress tensor kg
m s2

σ surface tension kg
s2

Σ interfacial area density m2

m3

τ viscous stress tensor kg
m s2

Dimensionless Groups

Eo Eötvos number

Fr Froude number

He distribution coefficient based on Henry’s law

Mo Morton number

πν kinematic viscosity ratio

πρ density ratio

Re Reynolds number

We Weber number

Others

∆
spatial stencil in physical domain (often based
on an averaging length scale)

q spatial stencil in computational domain
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Subscripts

b bubble phase

b boundary

c continuous phase

char characteristic

d diffusive

d dispersed phase

d drag (bubble force)

d projected face area vector, parallel to d

D downwind to P

∆ delta face area vector

eff effective

f face

h hydrodynamic

i, I interfacial/interface

i chemical species/component

k phase k

l lateral lift (bubble force)

l liquid phase

lim limiter,limiting

m microscopic

M macroscopic
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n normal

p (fluid) particle

p pressure

P
point in the center of the control volume (usu-
ally subject of examination)

p linear part of the source term

N
point in the center of a neighboring control
volume

ϕ
conditioned with respect to the generic phase
ϕ (usually subject of examination)

φ
conditioned with respect to the generic phase
φ (neighboring to phase ϕ)

ϕφ from phase ϕ to phase φ

r relative

S control surface

σ surface tension

td turbulent dispersion (bubble force)

u constant part of the source term

U upwind to P

vm virtual mass (bubble force)

Superscripts

n at the new time step

o at the old time step

oo at the ’second’ old time step

t at time t
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Oversymbols

Φ ≡ ΦV volume-average

ΦT time-average

ΦE ensemble-average

Φ̃ weighted volume-average

Φϕ conditional volume-average with respect to
phase ϕ

Φ̃ϕ conditional phase-weighted volume-average
with respect to phase ϕ

©Φ interface-average

©Φϕ conditioned interface-average with respect to
phase ϕ

Φ′ (Φ′ϕ) (conditional) phasic/intrinsic fluctuation with
respect to the averaging length scale

Φ′′ (Φ′′ϕ) (conditional) phase-weighted fluctuation with
respect to the averaging length scale

Φ] surface fluctuation

φ̃ normalized scalar property
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1
Introduction

1.1. Background – Scales, scales, scales . . .

Many applications in chemical and process engineering involve two-phase flows.
These can be categorised according to the phases present in the system as depicted in
figure 1.1. Examples of industrial two-phase flow applications are found in chemical,
petroleum, metallurgical and energy industries and cover liquid-phase oxidations,
hydrogenations, chlorination, gas scrubbing, waste water treatment and various bio-
technological applications.

However, as these types of flows often involve both a continuous cascade of temporal
and spatial scales usually varying over orders of magnitude (multi-scale) and multiple
coupled phenomena (multiphysics), their numerical treatment proves to be utmost
complex. Thus, no general methodology or technique has evolved yet: finally the
adopted approach severely depends upon the particular nature of the two-phase flow
that is to be captured.

Nevertheless, the numerical simulation of two-phase systems using Computational
Fluid Dynamics (CFD) has emerged as a powerful simulation tool for understanding
these types of flow in two-phase apparatus. Therefore, throughout the last two
decades different approaches have evolved and have been continuously developed
leading to the field of Computational Multi-Fluid Dynamics (CMFD).

These CMFD approaches were motivated by a scale separation that is presumed for
two-phase flows, given that the flow type (or flow regime) can be regarded as invariant
throughout the simulation. Consequently, a classification of CMFD approaches
can be done according to their ability of capturing interfacial scale regimes that
characterize a two-phase flow:

1
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droplet flow
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medium

liquid solid

gas

solid fixed

solid in motion

Figure 1.1: Classification of two-phase flow types.

• macroscopic scales, i.e., of mean/main flow features on the scales of the bound-
ing flow domain

• mesoscopic scales, i.e., of major changes of the fluid dynamic phenomena on
the scale of large eddies and recirculation regions

• microscopic scales, i.e., of flow features on the scale of bubble-bubble and
bubble-turbulence interaction, or in the range of the thickness of the interfacial
boundary layer

Several methodologies have evolved taking advantage of this presumed scale separa-
tion, two of which shall be considered more closely in the remainder of this section,
namely

• interfacial scale averaging and
• interfacial scale resolving methods.

Both of them are well-established methodologies and have been successfully adopted
to various two-phase flow types, capturing respective flow features by applying
different resolutions. However, they are usually found to be restricted to one flow
type being only valid for a narrow interfacial scale range characterizing this type.
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1.1. Background

1.1.1. Interfacial Scale Averaging Techniques

For simulation of industrial two-phase flow applications the scale to look at is typically
rather large – in the order of several meters. In contrast, the smallest scale one
might have to consider is that of a characteristic ”dispersed phase element” (DPE1),
which predominantly determines the fluid dynamics in an industrial two-phase flow
application. The scales of DPEs surely vary from tens of microns to millimeters,
depending on underlying process and material parameters under consideration.

Thus, there is a clear scale separation evident, which enables interfacial scale av-
eraging CMFD approaches to be used for two-phase flow applications possessing
dispersed flows (e.g., bubbly or droplet flows) occurring in industrial (large) scale
domains. Advantageously, these CMFD approaches employ averaging techniques in
which all interfacial scales under consideration are averaged – either spatially over an
averaging volume2, temporally over an averaging time interval, or ensemble-averaged
over a set of realizations. In contrast to its single-phase counter-part, the averaging
techniques for two-phase systems, however, need to be based upon conditioning [5],
in the course of which an indicator function is introduced enabling to discriminate
contributions to the balances of conserved quantities on a per-phase basis. In turn
this states the basis of the so-called concept of immersed interfaces [7, 18] being a
pivotal theme of interfacial scale averaging CMFD approaches. Its basic premise is
that the interface between different immiscible fluids is embedded or immersed into
the interior of the computational domain.

Consequently, all interfacial exchange phenomena are subject to modeling via (mostly
empirical) closure models. Therefore the development, determination and choice of
closure models is crucial for properly reproducing the desired interfacial physics.
Moreover, this must be accomplished in a way that the closure restores the physical
information that became non-resolved (and hence lost) due to the applied averaging
procedure. Ultimately, the challenge clearly is to do this on a physically sound basis,
rather than relying on empirical closures.

1.1.2. Interfacial Scale Resolving Techniques

On the other end of the scale range, i.e., at the molecular scale, an interfacial flow
comprises the motion of molecules whereas the interface is represented by a transition
region of finite thickness of typically a few tens of Ångströms. Over this region
collections of molecules pertaining to one phase (out of the two phases) coexist at a

1 generalized term for bubbles, drops or particles that will be used as general substitute throughout
this thesis

2 Due to its straightforward interpretability the volume-averaging technique mostly is employed in
the context of two-phase flows.
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certain probability promoting a smooth but rapid transition of the expected molecule
number density from zero to the respective bulk values.

However, for the purpose of this thesis we will consider only interfacial flow situations
for which two approximative but rather common assumptions apply:

1.) Continuum Hypothesis
Any fluid phase, a two-phase flow system under consideration might consist
of, can be regarded as a continuum, where flow and material properties are
well-defined spatio-temporal functions characterizing the phase and its flow.

2.) Manifold Hypothesis
The interface separating the two phases can be approximated as a mathematical
surface of discontinuity (two-dimensional manifold having zero-thickness and no
mass).

Note, these modeling hypotheses are most common and widely used. However, again
the assumptions are based upon a clear scale separation that is the molecular scale is
separated from the flow or interfacial scale (i.e., of a DPE) by orders of magnitude.

Conceptually, three methodologies are to be distinguished, each of which treats the
characteristic interfacial jump (e.g., in flow properties) in a different, thus, specific
manner. This special treatment of interfacial jump conditions becomes necessary,
since there is no natural or straightforward representation to handle these sharp
discontinuities in an (continuous) Eulerian framework.

1.) sharp interface (ghost fluid) methods
Sharp interface or ghost fluid methods are based upon numerical methods
explicitly accounting for interfacial discontinuities within the discretization,
which in effect fully retains the sharp characteristics of interfacial jumps in
pressure and velocity.

2.) interface tracking methods

2.1.) mesh-based tracking
These class of methods either directly align the phase interface with edges
of computation mesh cells (moving mesh methods) or the interface is
represented by an additional two dimensional mesh being superimposed
on a fixed three dimensional one (front tracking methods).

2.2.) marker-based tracking
Within this class the interface is tracked by directly marking it using
(massless) marker particles.

4
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3.) interface capturing methods
Generally there are two conceptual avenues

3.1.) marker-based capturing
The interface is captured by attaching marker particles to one of the two
phases in order to gather information about the interfacial morphology
from their distribution in the phase volume.

3.2.) indicator-based capturing
The interfacial morphology is captured by an order parameter (indicator)
marking one out of the two phases advantageously employing the concept
of immersed interfaces.
The concept of immersed interfaces is also a pivotal theme considering
interfacial scale resolving CMFD methods. It in particular exhibits the
advantage of decoupling the characteristic physical/interfacial scale (i.e.,
of a DPE) from the characteristic numerical/mesh scale (i.e., of a finite
(control) volume) by ’spreading’ the originally sharp interfacial jumps
over several mesh cells transferring them into a smooth (regularized) yet
approximative form.
There are two approaches to be distinguished:

• single-field (mixture) approach
The two-phase system is treated as ’mixture’ possessing one (center-
of-mass) velocity and (mixture) pressure. Varying material properties
as phase viscosities and densities are taken into account as mixture
quantities by use of a smooth order parameter (indicator). This
enforces the respective properties within the phases, while promoting
a smooth transition across the interface.

• two-field (two-fluid or Eulerian-Eulerian) approach
The two phases are treated separately – each with an own velocity
and pressure field. The desired jump conditions at the interface (i.e.,
boundary conditions) are inherently involved: a field pertaining to one
of the phases is consistently transferred to a fictitious field by use of
a smooth order parameter (indicator), by means of which the field’s
physical significance is decreased when crossing the fluid interface.
Eventually, the field has entirely lost its physical relevance on the
fictitious side of the interface.

From the above description of methodologies, it is evident that the challenge for all
interfacial scale resolving methods might be formulated as two-fold:

• flexibility and robustness (stability) for complex two-phase flow scenarios, e.g.,
changing interfacial morphology due to coalescence or break-up
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• capability to handle multi-scale two-phase flow scenarios, i.e., capturing the
mean interfacial evolution while under-resolving interfacial details as for in-
stance the corresponding microscale curvature or interfacial boundary layer.

Being a priori neither restricted to a certain flow type or scale regime nor exhibiting
features rendering its numerical treatment undue complex, it seems rational that the
most promising and developable approach encompassing both requirements needs to
be based upon the Eulerian-Eulerian two-fluid methodology.

1.2. State-of-the-Art & Motivation

Although two-phase flow systems and related interfacial transport phenomena com-
monly cover a wide range of physical scales, prevailing CMFD approaches presume
a distinct scale range in narrow confines. E.g., DPEs being much larger than a
characteristic length scale of the underlying averaging (control) volume are dealt
with via interfacial scale resolving methods, whereas DPEs that are much smaller
than a characteristic length scale of the underlying averaging volume are modeled
using interfacial scale averaging techniques.

However, it needs to be emphasized that this assumption represents a substantial
constraint imposing considerable restrictions on the concrete two-phase flow situa-
tions that can be treated using CMFD. For this reason, several groups have recently
suggested to explicitly couple interfacial scale averaging and interfacial scale resolving
methods in order to arrive at a more general two-phase flow model, that is capable
of treating flow phenomena over a wider range of interfacial scales. In the following,
these approaches are briefly discussed in order to gather an overview of the state-
of-the-art. For convenience, the description shall stick to the respective notation
and syntax of the original studies. Furthermore, only characteristics and features
rendering the models unique shall be briefly set out. For the full sets of governing
equations the reader is referred to the original publications as they are referenced in
the remainder.

Černe et al. Černe et al. [27–33] suggests the coupling of the Volume-of-Fluid (VoF)
method with the classical two-fluid model (TFM). This procedure has been
motivated by the limitation of the VoF method regarding the local spatial
resolution (i.e., mesh density), which must be chosen sufficiently small in order
to allow the capturing of interfacial structures as the curvature, for instance. On
the other hand, the TFM has been found more suitable for highly dispersed two-
phase flows, where the VoF method would suffer from its need for computational
resources. Moreover, the TFM – though in principle being capable of resolving
interfacial scales – is assessed to be by far more reliable and developed for
dispersed flows, where an interfacial scale averaging resolution is employed.
Conceptually, the VoF method is adopted for parts of the domain, where the

6
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mesh density allows the VoF method, as interfacial scale resolving approach, to
capture detailed interfacial structures. In other parts of the domain, where the
two-phase flow is too dispersed to properly resolve down to crucial interfacial
scales, the TFM is applied.

The following model features and characteristics are found to be noteworthy:

• The coupled approach is capable of describing two-dimensional, incom-
pressible two-phase flow of Newtonian fluids.

• Each method is associated to a certain part of the domain that is separated
from each other. Consequently, a separate set of governing equations
is used. Hence, the coupling approach moderates between the two-field
formulation of the TFM and the single-field formulation of the VoF method

~u (TFM)
1 = ~u (TFM)

2 = ~u (VoF) (1.1)

and vice versa

~u (VoF) = f1 ~u
(TFM)

1 + f2 ~u
(TFM)

2 , (1.2)

where the subscripts 1 and 2 indicate the respective phases and f denotes
their volumetric phase fraction.

• The coupling of the VoF and TFM approach is accomplished using the
volumetric phase fraction of the liquid phase, since this quantity is used
in both approaches underlying the same physical interpretation. The
coupled approach is inherently based on the VoF single-field formulation
and switches into the TFM two-field formulation relying on a specific
switch criterion, which has either been based on the
– interface reconstruction function of the LVIRA algorithm [29, 30, 32],

or the
– gradient of the volumetric phase fraction [28,31,33].

• For the interfacial scale resolving VoF approach, the surface tension has
been disregarded, since it was assumed to play no important role for the
model switching. Within the interfacial scale averaging TFM approach,
only a simple interfacial friction (drag force) model has been employed
in order to accomplish the coupling of the phase momenta equations for
~u (TFM)

1 and ~u (TFM)
2 , respectively.

Summarizing, the coupled VoF-TFM approach suggested by Černe et al. al-
leviates restrictions of both the VoF and the TFM approach with respect to
constraints of spatial resolution – i.e., an appropriate mesh density required for
each approach to work properly. However, relying on a switch criterion, the
coupled VoF-TFM approach involves another source of uncertainty, which has
to be considered crucial for the achievable accuracy and reliability.
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Tomiyama & Shimada In [20–25] Tomiyama and Shimada present their so-called
NP2 (read N+2) model, which is based on a multifluid formulation encom-
passing two fields for the continuous gas phase (cG) and liquid phase (cL),
respectively, and N fields for the dispersed bubble phase, which is classified
into multiple groups of different bubble sizes. This approach is motivated by
the difficulty of simultaneously capturing a continuous gas phase, a continuous
liquid phase, a large scale gas-liquid interface separating the two continuous
phases and many dispersed bubbles of non-uniform size, as it is found in bubble
columns that usually operate in the heterogeneous bubble flow regime. The
concept is based on the length scale ratio d? of a sphere-volume equivalent
bubble and a computational cell, d? ≡ db

∆x [20], which has been identified as
crucial parameter to assess accurate predictions using multipurpose CMFD
over a wide range of interfacial scales. Thus, if d? � 1, i.e., the characteristic
interfacial length scale is much larger than the computational cell size, the two
phases on each side of the interface are regarded as continuous gas and liquid
phase, respectively. For d? ≤ 1 the gas phase is classified into N groups in terms
of bubble size. Consequently, for the sum of all volumetric phase fractions α,
it is:

αcG + αcL +
N∑
m=1

αdm
!= 1. (1.3)

Following model features and characteristics are noteworthy:

• The NP2 model is based on the assumption that both the gas and the
liquid phase can be considered as incompressible Newtonian fluids. Fur-
thermore, it is assumed that there is no phase change due to condensation
or evaporation. Moreover, viscous and turbulent stresses are neglected
within the gas phase.

• The NP2 model employs the single-field formulation for the two continuous
phases. Herein the mixture density ρc and viscosity µc are evaluated as

ρc ≡
αcLρcL + αcGρcL

αcL + αcG
and µc ≡

αcLµcL + αcGµcL
αcL + αcG

(1.4)

Similar to the VoF method, both the surface tension force and the viscous
and turbulent stress is accounted for.

• For the dispersed phase a multitude of interfacial momentum transfer mod-
els is provided, as for the interfacial drag, lift, virtual mass and turbulent
dispersion forces. Moreover, momentum transfer between the dispersed
gas phase and the continuous liquid phase is found to be incorporated in
the NP2 model.

Concluding the NP2 model by Tomiyama and Shimada has to be regarded as
very flexible hybrid model combining interfacial capturing and Eulerian multi-
fluid capabilities.
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Alajbegovic Alajbegovic developed a hybrid method combining the multi-fluid and
the Volume-of-Fluid approach [1], based on the work of Černe et al. [32] and
Tomiyama and Shimada [25], and fully implemented in the commercial CFD
code Avl Fire/Swift. As the NP2 model of Tomiyama and Shimada, this
method is applicable for two-phase flows where well-defined interfaces between
different phases/fluids co-exist with small scale multiphase structures. It is
motivated by the need for an efficient simulation method for complex flows
with multiple phases/fluids on arbitrary unstructured meshes. According to
Alajbegovic, examining a particular multiphase flow, a selection has to be
made comparing the required spatial and temporal resolution to the available
computational resources. However, as Alajbegovic claims, situations often exist
where a comparison is not appropriate, since in many industrial multiphase
flow applications relatively large-scale interfaces co-exist with much smaller
multiphase structures. Conceptually, the method is similar to that of Černe
et al. and Tomiyama and Shimada: The interfaces of relatively large scales are
treated by the VoF method, whereas the small-scale multiphase flow structures
are accounted for by using a multi-fluid approach, In order to provide more
flexibility, any two of the phases treated by the multi-fluid approach can
either have different velocities (two-field formulation) or share the same velocity
(single-field formulation).

The following model characteristics and features have to be mentioned:

• The model treats isothermal multiphase flows. It is assumed that all fluids
are incompressible and Newtonian.

• The hybrid model is based on the observation, that the mass conservation
equation in the multi-fluid and the phase fraction conservation equation in
the VoF approach are identical. It is concluded, that the only difference
to be introduced for the hybrid model is the handling of the advection
term: this is accomplished for the ’VoF phase’ using the compressive
discretization Cicsam developed by Ubbink and Issa [26], while for the
’multi-fluid’ phase ordinary schemes as upwind or central discretization is
utilized.

Concluding, the hybrid model has to be regarded as very flexible approach that
features a robust and efficient numerical technique enabling to simulations of
practical industrial multiphase problems. However, as Alajbegovic concludes
as well, more efforts are necessary before the hybrid model mature enough to
become a versatile simulation tool in industry.

Akimoto & Yoshida Akimoto and Yoshida present the capability of their Advanced
Two-Fluid Model in [36–39]. The development of the advanced two-fluid model

9
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has been based on the conventional two-fluid model: the VoF model is incorpo-
rated in the framework of the two-fluid model, that is interface structures larger
than computational cells are simulated by the VoF method, while small bubbles
and droplets are treated by the two-fluid model. Coming from thermo-hydraulic
codes, the authors were motivated by the need for a more accurate and general
multi-dimensional two-phase flow model that is not constrained by correlation
representing geometry effects. Both the capability of simulating two-phase
flow that includes large and small interface structures and the requirement to
economize the computational resources have led to this development in the
commercial CFD code Ace-3d. As already indicated, the conceptual approach
of the advanced two-fluid model is around the incorporation of the VoF method
into the two-fluid model framework. For this purpose, the information about
the interface position is determined from the volumetric phase (void) fraction
inside a computational cell only. Hence, three numerical regions are distin-
guished:

1.) droplet regions (f = 1) including droplets below the calculation cell size.
The void fraction is larger than 0.5.

2.) bubble regions (f = 0) including bubbles below the calculation cell size.
The void fraction is less than 0.5.

3.) interface regions (0 < f < 1) including the interface that is greater than
the computational cell size. The interface is located between the bubble
and droplet regions.

In order to calculate the two-phase flow in the bubble and droplet region
(f = 0 and f = 1, respectively) individually and to adopt different empirical
correlations for bubbles and droplets, the void fraction is expressed as

α = fαb + (1− f)αd. (1.5)

Consequently, two conservation equations are necessary

• for the volumetric total fraction of the bubble region3

∂f

∂t
+ UL,k

∂f

∂xk
= 0. (1.6)

• for the volumetric liquid fraction within the bubble region

∂fφb
∂t

+ ∂fφbUL,k
∂xk

= − (Γed − Γdd) , (1.7)

3 use of Piecewise-Linear Interface Construction (PLIC) algorithm for interface reconstruction.
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where φb ≡ 1 − αb and Γed and Γdd represent droplet entrainment and
deposition rates, respectively. Within the interface region (0 < f < 1)
φd ≡ 1− αd is evaluated as

φd = 1− α− fφb
1− f . (1.8)

• Similarly, for the droplet region the volumetric gas fraction is evaluated:

∂ (1− f)φd
∂t

+ ∂ (1− f)φdUG,k
∂xk

= (Γed − Γdd) . (1.9)

Furthermore, it is worth noting additional model features and characteristics:

• The advanced two-fluid model can deal with incompressible two-phase
flows with Newtonian fluids.

• Interfacial forces are considered for both bubbles and droplets encompass-
ing the drag force, lift force and turbulent diffusion force. The surface
tension force is accounted for by the Continuous-Surface-Force (CSF)
model of Brackbill [4].

• A two-phase k − ε model is adopted to account for turbulence effects
(turbulent energy production and dissipation) due to the presence of the
gas-liquid interface, small bubbles and droplets.

As a conclusion, the advanced two-fluid model of Akimoto and Yoshida has
to be regarded as efficient hybrid model capable of simulating two-phase flows
with large and small scale interface structures. In particular, the necessary
specific treatment of bubbles and droplets in the interfacial region within the
hybrid TFM-VoF method is described in detail. However, little is known
on entrainment and deposition rate modeling, which has to be considered as
crucial.

Minato et al. Minato et al. demonstrate the capabilities of their so-called Extended
Two-Fluid Model in [8–14]. This model realizes the combined merits of the
two-fluid model and the Volume-of-Fluid approach. However, in contrast to the
aforementioned methods this is entirely attempted within the two-fluid model
framework. This means that the governing equations of the extended two-fluid
model are those of the conventional two-fluid model, but the solution techniques
differ dependent on the spatial resolution and the scale of the interface structure
under consideration. This approach has been motivated by the need for an
improved and verified simulation technique for three-dimensional, complex,
heterogeneous and intermittent gas-liquid flows with the capability beyond that
of the conventional two-fluid model. Conceptually the extended two-fluid model
has been proposed as hybrid simulation method of

11
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• macroscopic interface motion with a steep volumetric phase (void) fraction
gradient

• microscopic dispersed phase motion as a continuous field of the volumetric
gas fraction.

Thus, the extended two-fluid model treats macroscopic interface structures with
a larger scale than the underlying mesh cells as intermittent and heterogeneous
features, i.e., as discontinuous profiles of the volumetric phase (void) fraction.
For this purpose, the transport of the ’step-wise’ void profile is utilized using
the downwind discretization scheme as long as the resultant void fraction is
between zero and one, while the upwind discretization scheme is employed in
order to maintain boundedness, i.e., in the limits of the void fraction being zero
and one, respectively. On the other side, the extended two-fluid model treats
microscopic interface structures with a scale smaller than the mesh cells in an
averaged manner as in the conventional two-fluid model.

In particular, the following model features and characteristics have to be high-
lighted:

• The extended two-fluid model is capable of describing complex three-
dimensional heterogeneous and intermittent flow of incompressible two-
phase system with Newtonian fluids.

• As the extended two-fluid model is entirely based on governing equations
known from the conventional two-fluid model, several model terms have
been generalized to enable the treatment of gas-liquid interfaces:
– In order to account for interfacial friction, a friction force is stated as

F (f)
k,k′ = αgαl (ρl − ρg) g

V̄ 2
gj

|uk′ − uk| (uk′ − uk) , (1.10)

where the friction coefficient has been stated according to Andersen [2]
on the basis of one-dimensional transient two-phase flow and the
steady-state drift-flux theory. V̄gj denotes the drift velocity, V̄gj =√

2
[
σg (ρl − ρg)/ρ2

l

]1/4. Moreover, the model accounts for virtual
mass and wall friction effects.

– For turbulence modeling it is simply assumed that the eddy viscosity
is proportional to the kinematic viscosity with a multiplier of 10.
However, for the bubble-induced eddy-viscosity, a more sophisticated
and generalized approach is attempted: the well-known model of Sato
and Sekoguchi [19] is adapted to treat general features of the gas-liquid
interface by replacing the bubble size and the relative velocity with
the Taylor length and the drift-flux velocity, respectively:

ε (generalized)
i = 4αgαl λTaylor V̄gj , (1.11)
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where the Taylor length is calculated as λTaylor = 2π
√
σ/g (ρl − ρg).

This treatment is stabilizing and thus considered necessary, as the
two-fluid model cannot account for surface tension.

As conclusion, the extended two-fluid model has to be considered as
a first attempt to treat both heterogeneous/intermittent and dispersed
two-phase flows employing a unified framework on the basis of the well-
established governing equations of the two-fluid model. However, espe-
cially the adopted models suffer from a physical justification and lack of
mathematical rigour.

Štrubelj et al. Štrubelj et al. suggest a combined model suitable for both stratified
and dispersed flows [34, 35]. The underlying physical picture is based on the
work of Černe et al. [27], that is stratified flows exhibit ’large’ and dispersed
flows ’small interfaces’. The underlying numerical grid spacing is assessed in
order to distinguish ’small’ from ’large’ interface structures. However, Štrubelj
et al. argue that the main shortcoming of Černe’s coupled approach is the
different number of governing equation in distinct regions of the same com-
putational domain. As a remedy they suggest to utilize the two-fluid model in
the whole domain and to implement an appropriate ’interface tracking/sharp-
ening’ algorithm, when stratified flow is encountered. To switch the ’interface
tracking/sharpening’ algorithm on and off, a transition criterion is suggested,
which discriminates large interfacial length scales in stratified flows from small
(sub-grid) interfacial length scales in dispersed flows.

Štrubelj et al. have identified four crucial sub-models stating the main features
and characteristics of their combined approach. This covers a

• model for the surface tension force, which has to be split between the two
phase momenta governed by the two-fluid model. Following Bartosiewicz
et al. [3], this split in phase-contributions is suggested to take the form

~FS,k = βk ~FS , (1.12)

where ~FS and ~FS,k represent the surface tension force density according
to Brackbill et al. [4] and its contribution to the momentum of phase k,
respectively. Consequently, ∑k=1,2 βk

!= 1 must be fulfilled, as the sum
of the two phase momenta eventually has to result in a force density due
to surface tension being equivalent to ~FS . For the split factor βk, several
models have been considered by Štrubelj et al. .
– According to Bartosiewicz et al. , an appropriate model can be based

on a mass average

βk ≡
αkρk∑

k=1,2
αkρk

(1.13)
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or, alternatively, on a volume average

βk ≡ αk. (1.14)

– Štrubelj et al. additionally proposed to add the surface tension force
entirely to the momentum of the heavier phase β1 ≡ 1, or alternatively,
to the lighter one β2 ≡ 1.

• interface ’tracking/sharpening’ algorithm, which has been based on the
so-called ’conservative level-set method’ by Olsson and Kreiss [15–17].
Originally, this approach traces back to the work of Harten [6]. The
algorithm comprises two steps. In a first step the continuity equation
is solved. Then, an additional equation is solved in order to counter-act
the numerical diffusion utilizing artificial compression4:

∂α1
∂τ

+∇• (α1 (1− α1) ~n) = ε∆α1, (1.15)

which is solved until steady-state is reached. In doing so, the interface
representation is maintained as sharp as possible. τ represents an artificial
time. Moreover, ~n denotes the interface normal vector ~n ≡ ∇α1

|∇α1| , which is
evaluated only at the beginning of the artificial compression step.

• model for the interfacial drag force, which Štrubelj et al. suggests as
follows:

~FD,1 = α1α2 (~u2 − ~u1) ρm
cD
d
, (1.16)

where cD, ρm and d denote the drag coefficient, mixture density and
interfacial length scale, respectively. However, Štrubelj et al. concede that
this model suffers from physical background and is adopted solely to ’more
or less equalize’ the phase velocities in vicinity to the interface. This is
achieved by adjusting the interfacial length scale d such that it takes values
that are sufficiently small to cause a strong coupling and, consequently,
equal phase velocity.

• model for the transition criterion, which is supposed to locally distinguish
between stratified flow with large interfacial length scales and dispersed
flow with small interfacial length scales relative to the local grid size.
Štrubelj et al. suggest a combination of two scalar criteria:
– curvature criterion, which is based on a normalized surface tension

force,

γκ ≡
∆x2|~FS |

σ

!
> γ∗κ = 0.1, (1.17)

in order to switch-off the interface ’tracking/sharpening’ algorithm for
large curvatures (small radii of interfacial structures).

4 Note in passing, that a closer examination of this equation reveals a inconsistency in the dimension
of the compressive term.
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Figure 1.2: Scale inconsistency of prevailing Eulerian multi-scale CMFD
approaches.

– interfacial area density transition criterion, which is based on the
maximum interfacial area density on a computational stencil q of 3x3
cells in a two-dimensional simulation. The interfacial area density
transition criterion is used to recognize

dispersed flow γt ≡ maxq (|∇α|)∆x
!
< γ∗t and

stratified flow γt ≡ maxq (|∇α|)∆x
!
> γ∗t , (1.18)

and then switch between drag force models for stratified and dispersed
flows, respectively. Appropriate values for γ∗t are found to be between
0.3 and 0.65.

Concluding, the combined model of Štrubelj et al. has to be regarded as a first
approach to comprehensively incorporate capabilities of the Volume-of-Fluid
method into the two-fluid model framework. However, Štrubelj et al. attempt
to deduce crucial models for stratified flows from the established two-fluid model
for dispersed flows mostly motivated by pure numerical considerations without
a sound physical background. It is hardly surprising that this approach is
associated with a severe scope of uncertainty.

All the aforementioned approaches attempt to explicitly couple the two-fluid model
with the Volume-of-Fluid method or to partially mimic the Volume-of-Fluid method
within the two-fluid model framework. It is Tomiyama [20], who enables to clearly
recognize the issue around these approaches by introducing the dimensionless ratio
d? ≡ db

∆x : if d? � 1, i.e., for the bubble diameter being much larger than the
computational cell size, the VoF method is adopted, while for d? ≤ 1, a two- or
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multi-fluid approach is utilized. A generalization can be obtained when adopting
a characteristic interfacial length scale lchar instead of the bubble diameter, which
results in πl ≡ lchar

l∆x
instead of d? as shown in figure 1.2. In consequence, there is still

a gap in the scales, which renders the above hybrid methods inconsistent. It is not
clear, to what extend the hybrid approaches suffer from this inconsistency. However,
this does introduce another level of uncertainty and (at least) casts severe doubts on
the applicability of these models to correctly capture transient multi-scale two-phase
flows.

1.3. Scope and Objectives

A more general modeling framework is needed, that not only inherently encompasses
both interfacial scale resolving and interfacial scale averaging approaches, but also
consistently involves intermediate scale situations. Henceforth, such an approach
based upon a consistent model capturing under-resolved interfacial features will be
presented. For this purpose, the two-fluid approach states the pivotal subject of this
thesis.

In the following, the consistent derivation of a novel comprehensive model framework
shall be examined, starting from first principles that are the local instantaneous
conservation equations for mass, momentum and chemical species as well as related
interfacial jump conditions. This eventually will lead to a closed set of governing
equations suitable for numerical simulations of two-phase multi-scale flows. I.e.,
the resulting model framework will encompass both interfacial scale resolving and
averaging approaches enabling a smooth transition between these limiting cases.

The remainder of this thesis comprises two parts, the first of which covers the
theoretical and numerical basics, while the second one sets out its concrete utilization.
The first part is organized as follows:

Part I – Theory and Development

Chapter 2 provides the theoretical basis for the two-phase model framework, starting
from first principles: the conditional volume-averaging technique is introduced
and applied to both the local instantaneous generic transport equations for
transport in a two-phase system and to the coupling interfacial jump condi-
tions. As demonstrated, this enables us to treat the local instantaneous (mi-
croscopic) two-phase flow structures in a beneficial manner – i.e., representing
the transport and interfacial jump of mass, momentum and chemical species in
a two-phase system by use of generic equations and (moreover) of one arbitrary
general intensive flow quantitity.
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Chapter 3 In this chapter constitutive relations are suggested accomplishing a sound
closure for interfacial scale resolving and interfacial scale averaging models.
Finally, the framework is expanded to a multi-scale methodology. This results
into a novel closure framework covering the intermediate interfacial scale range
allowing for partially (un)resolved scales within the flow domain – which is
deemed necessary for varying flow types exhibiting different characteristical
interfacial scales as the flow evolves.

Chapter 4 presents a Finite Volume Method (FVM) being based on control volumes
that exhibit an arbitrary shape. Consistent to chapter 2, the discretization of
a generic transport equation for an arbitrary general intensive physical flow
quantitity is examined – on a term by term basis. Comments are provided
on the close relationship between the size and shape of the averaging volume
stating the basis of the conditional volume-averaging technique (chapter 2) and
the size and shape of a control or computational cell volume being considered
within the FVM for arbitrarily unstructured meshes. Finally the algorithm
being capable to the numerical solution of the governing model equations for a
multi-scale two-phase flow is assembled.

Part II – Results & Publications

At the outset of this research, it has been clear that considering the immersed inter-
face concept, one field of methods – namely the interfacial scale resolving methods –
was alleged to be far less developed than the other – the interfacial scale averaging
methods. However, it is the author’s opinion that previous works have attempted
to enhance interfacial scale averaging methods in a way, that surely is no longer
in the original spirit of Ishii’s two-fluid model. These enhancements attempt to
provide information on details of the two-phase flow on a level significantly higher
than the underlying methodology is able to provide. Consequently, this is done
at the costs of additional models being necessary to compensate for this ’lack of
compatibility’. Thus, within the framework of this work emphasize has been set
upon the development of appropriate modeling approaches being compatible with
each other.

The second part of this thesis covers papers that have been published during this
research project. The topics therein encompass pivotal key aspects of Eulerian two-
phase flow modeling being based upon the conditional volume-averaging procedure
and the immersed interface concept, the theoretical and numerical basis of which has
been set out in chapter 1-4: interfacial scale averaging techniques (chapter 5 and
6 – gas-liquid flow in bubble columns), interfacial scale (fully) resolving techniques
(chapter 7 – single rising bubble & species transfer across fluid interfaces) and multi-
scale gas-liquid flows (chapter 8 – hybrid interface-resolving two-fluid model).
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Chapter 5 and 6 Chapter 5 aims at the exposure of the expected simulation quality
considering basic models for two-fluid-model based simulations of dispersed
gas-liquid flows in bubble columns at high gas fractions. As a subject of
interest for these kind of gas-liquid reactors both the fluid dynamics and liquid
mixing characteristics in bubble columns have been examined. For this purpose,
solely models exhibiting conceptual proximity to the underlying two-fluid model
approach (in the sense as stated above), have been ultimately applied.

Chapter 6 focuses on the evaluation of simulation results obtained by a selection
of models as they were introduced in chapter 5. The results are further com-
pared with those reported in literature. The main focus was set on capturing
the characteristic process and design parameters of bubble columns.

Chapter 7 aims at the application of the methodology as set out in the chapters
2 and 3, however, fully resolving the interfacial scales and thus proving its
usability for segregated flow types – using the example of a single bubble rising
in quiescent liquid.

The methodology is demonstrated for the case of species transport across a fluid
(bubble) interface. The derivation of the novel Continuous-Species-Transfer
(CST) method is presented, which enables interface capturing techniques to
deal with species transfer in a straightforward manner considering cases, where
both steep concentration gradients (at high Schmidt numbers) and a sharp
concentration jump (at high Henry coefficients due to different species’ solubil-
ity) occur at the fluid interface. Thus, the main objective of this study was to
establish the CST method for species transfer across fluid interfaces of arbitrary
morphology in free-surface flows at high viscosity and density ratios.

For this purpose, detailed numerical simulations of single rising bubbles have
been performed at high resolutions. Results were compared to experimental
results and correlations derived thereof.

Chapter 8 presents the theoretical basis and application of a generalized multi-
scale model framework based on the Eulerian-Eulerian two-fluid methodology,
which has been derived in chapter 2 and 3. The main idea is based on the
immersed interface concept and conditional volume-averaging (spatial filtering)
of the fundamental conservation equations and a specific approach for closure
modeling. The two-phase flow features are first divided into an unresolved
portion (on sub-grid scale) and a resolved portion, and subsequently interpreted
on a physical basis leading to sound closure relations.

The resulting hybrid interface-resolving two-fluid model (HIRES-TFM) enables
to capture the mean interfacial evolution and allows for under-resolving inter-
facial details (microscale curvature and interfacial boundary layer) in a way
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that enables to consider large-scale flow domains and, moreover, renders it
compatible with the LES framework for turbulence modeling. Moreover, this
multi-scale interface-capturing approach inherently bridges the gap in scales to
the well-established two-fluid model for dispersed flows. For this purpose the
concept of interpenetrating continua has been accomplished by the concept
of partially penetrating continua. Hence, the presented multi-scale model
framework generally enables to treat both dispersed and segregated flow types
simultaneously in the same flow domain – just requiring distinct, type-specific
closures.

The chapter provides results for various two-phase test cases, against which the
model has been validated. Both experimental and analytical reference data are
in a very good agreement with the results obtained by HIRES-TFM.

Chapter 9 summarizes this thesis and offers some suggestions and conclusions for
future research work.
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2
Theory

While mathematical correctness
does not imply physical validity,
the latter cannot be obtained with-
out the former.
D.A. Drew & S.L. Passman [1]

Abstract

This chapter provides the consistent derivation of the governing equations for two-phase
flows, on the basis of which computational simulations in the field of Computational
Multi-Fluid Dynamics (CMFD) are routinely accomplished.

We start from first principles, that are instantaneous conservation equations and in-
terfacial jump relations for mass, momentum and chemical species. Conditioning and
averaging eventually results in fundamental yet unclosed two-phase model equations
suitable for evaluation.
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2. Theory

Figure 2.1: Control volume – Single-phase flow.

The central approach both in CFD for single-phase and in CMFD for two- and mul-
tiphase flows is to balance generally conserved quantities such as mass, momentum
and chemical species. These quantities are assumed to change continuously within
each phase, whereas discontinuous jumps might be observed at the phase interface(s).
Thus, for the following it is instructive to distinguish the single-phase from the two-
phase situation considering the associated transport of mass, momentum and species
separately – first within the bulk and hereafter across the interface of a phase under
consideration.

As a presumption but without loss of generality we shall focus and restrict ourself to
isothermal two-phase flows of immiscible and incompressible Newtonian fluids.

2.1. Local Instantaneous Bulk Conservation Equations

2.1.1. Single-phase Flow

In a first step, consider a control volume V that is arbitrary in its shape and spatially
fixed within an Eulerian framework as illustrated in figure 2.1. Over this control
volume balances shall be formulated in the following. For this, suppose that one
fluid of density ρ crosses the control volume’s surface S at an infinitesimal surface
element dS with a velocity U.

24



2.1. Local Instantaneous Bulk Conservation Equations

Let Φ(x, t)1 be an arbitrary general intensive physical quantitity, e.g. a fluid property
(scalar or tensor of any rank) being transported within a spatio-temporal domain.
Note that the transport quantity Φ represents the intensive equivalent of extensive
balance quantities, e.g., mass, momentum and energy, on the basis of which balance
equations are stated commonly.

According to these balances the rate of change of Φ in time within an arbitrary control
volume V is generally constituted from different contributions, that are either volume
or surface sources and thus can be assembled accordingly as:

d

dt

∫
V (t)

ρΦ dV =−
∮
S(t)

n• (ρΦU) dS

−
∮
S(t)

n• (−ΓΦ,d∇Φ) dS

+
∫
V (t)

SΦ(Φ) dV. (2.1)

The general balance given by equation 2.1 states that the total amount of Φ will
change within the control volume V if a diffusive or convective net flux across the
bounding control surface S takes place, or a source/sink within the control volume
V itself causes an increase/decrease of Φ. ρ and U represent the phase density and
velocity, respectively. SΦ denotes a generic volumetric source term. ΓΦ,d represents
a generic transport coefficient for the diffusive transport of the quantity Φ.

In order to assort the terms of equation 2.1, commonly two differential geometry
theorems are employed, that are valid for any material control volume V (t). For an
arbitrary vector a it is:

• Leibniz’ theorem
d

dt

∫
V (t)

a dV =
∫
V (t)

∂a
∂t

dV +
∮
S(t)

n•USa dS. (2.2)

Being arbitrary in shape but fixed in space and time, the displacement velocity
of the control surface S becomes US = 0, such that the last term of equation
2.2 can be omitted henceforth.

• Gauss’ theorem∫
V (t)
∇•a dV =

∮
S(t)

n•a dS, (2.3)∫
V (t)
∇a dV =

∮
S(t)

na dS, (2.4)

1 In order to accentuate that a flow quantitity can be a scalar, vector or tensor, henceforth Φ (x, t)
shall be used, denoting an arbitrary intensive physical quantity – instead of the more common
and conversant notation φ (x, t).
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2. Theory

Table 2.1: Coefficients for the generic transport equation (single-phase
flow).

balance Φ ΓΦ,d SΦ

mass 1 0 0

momentum U µ ρg−∇p

species xi ρDi R̂i

M/ρ ci M Di M Ri

where tantamount to n dS the surface area vector dS = n dS (both of which
pointing outwards in normal direction on the surface S(t) of the material control
volume V (t)) shall be introduced for the further course of this thesis.

Using Leibniz’ theorem according to equation 2.2 the l.h.s. of equation 2.1 might be
rearranged bringing the time derivative inside the integral, which is feasible since the
control volume V is spatially fixed:

d

dt

∫
V (t)

ρΦ dV =
∫
V (t)

∂

∂t
(ρΦ) dV. (2.5)

Next, applying Gauss’ theorem according to equations 2.3 and 2.4 both surface
integrals, i.e., the convective and diffusive terms on the r.h.s. of equation 2.1, can be
rewritten in terms of volume integrals:∮

S(t)
n• (ρΦU) dS =

∫
V (t)
∇• (ρΦU) dV and (2.6)∮

S(t)
n• (ΓΦ,d∇Φ) dS =

∫
V (t)
∇• (ΓΦ,d∇Φ) dV. (2.7)

Then, substituting equation 2.5, 2.6 and 2.7 into equation 2.1 gives∫
V (t)

[
∂

∂t
(ρΦ) +∇• (ρΦU)−∇• (ΓΦ,d∇Φ)− SΦ(Φ)

]
dV = 0. (2.8)

As the control volume V can be chosen arbitrarily – it just needs to be fixed spatially
as a constraint – tantamount to the integral on the l.h.s. of equation 2.8 its integrand
may be set to zero, resulting in the so-called generic transport equation for Φ,

∂

∂t
(ρΦ) +∇• (ρΦU)−∇• (ΓΦ,d∇Φ)− SΦ(Φ) = 0. (2.9)

As transport equations mostly exhibit this generic mathematical structure, one
simply has to replace the transport quantity, coefficients and source terms in equation
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2.1. Local Instantaneous Bulk Conservation Equations

2.9 according to table 2.1 in order to arrive at the well-known local-instantaneous
governing equations of continuum mechanics, representing the principles of

• conservation of mass (local instantaneous continuity equation)
∂ρ

∂t
+∇• (ρU) = 0. (2.10)

Note for an incompressible fluid (ρ = const) equation 2.10 reduces to

∇•U = 0, (2.11)

rendering the flow divergence-free with a solenoidal velocity field.

• conservation of linear momentum (henceforth local instantaneous momentum
equation)

∂ρU
∂t

+∇• (ρUU)−∇• (µ∇U) = ρg−∇p. (2.12)

Note in passing that equation 2.12 can be rewritten into a more common form by
reformulation of the diffusive term for incompressible Newtonian flows decom-
posing the velocity gradient tensor∇U into a symmetric (D) and antisymmetric
(S) part:

∇• (µ∇U) = µ∇• (∇U) = µ∇• (− (D + S)) (2.13)

with D ≡ −1
2
(
∇U + (∇U)T

)
and S ≡ −1

2
(
∇U− (∇U)T

)
,

representing the rate-of-strain (or rate-of-deformation) tensor, being positive
for compressive contributions, and the vorticity (or spin) tensor, which does
not contribute to viscous shear and/or compression.

Then by defining2 the total momentum flux tensor (or total stress tensor) as

σ ≡ pI + τ where τ = 2µD, (2.14)
2 In most treatises on mechanical engineering or fluid mechanics a different convention is chosen,

that is the negative transposed of σ. As the total stress tensor for a Newtonian fluid is symmetric
a transposition is not particularly worrisome (σ = σT , due to angular momentum conservation);
however the sign convention is interesting: Throughout this thesis the total stress tensor is
defined such that −

∫
S

(σ•n) dS can be interpreted as rate of increase of momentum due to
external forces acting on the fluid inside the control volume V – constituted of both the body
force exerted by gravity and the surface force exerted by the surrounding fluid [2]. Hence the
total momentum within the control volume V will increase for a net influx of momentum across
the bounding surface S (and vice versa). Doing so leads to two benefits regarding consistency:
(i) For one-dimensional heat conduction (Fourier’s law, qy = −λ dT

dy
) and one-dimensional species

diffusion (Fick’s law, ji = −Di dci
dy

) the heat/species flux is positive when heat/species is moving
in the positive y-direction. It is felt that in analogy for a simple shear flow of a Newtonian fluid
(Newton’s law, σyx = −µ du

dy
) the viscous flux σyx should be defined positive if the momentum

flux moves in positive y-direction (direction of decreasing velocity). (ii) If the total stress tensor σ
is decomposed into an isotropic (static) pressure part and a deviatoric (dynamic) viscous part as
given by equation 2.14, both contributions have the same sign. I.e., compression is positive in both
contributions – in accordance with the sign convention commonly employed in thermodynamics.
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2. Theory

the momentum equation becomes
∂ρU
∂t

+∇• (ρUU) = ρg−∇•σ. (2.15)

Similarly, for an incompressible fluid
∂U
∂t

+∇• (UU) = g−∇•σ/ρ. (2.16)

• conservation of chemical species
As for the total mass, also the components i of a particular phase give rise to
conserved quantities. Generally this can either be expressed mass-based (mass
fraction xi) or volume-based (molar concentration ci). Thus, for a constant
mixture density ρ = const (assuming incompressible flow and dilute species
concentration) it is

∂xi
∂t

+ ρ∇• (xiU)−∇• (Di∇xi)− R̂i/ρ = 0, and (2.17)
∂ci
∂t

+∇• (ciU)−∇• (D∇ci)−Ri = 0. (2.18)

2.1.2. Two-phase Flow

In order to extend the consideration towards a two- or multiphase case, it is in-
structive to immerse an assemblage of interfaces separating the phases of the system
within the control volume V (see immersed interface concept – page 5) [3–5]. Note
that the control volume as depicted in figure 2.2 is still spatially fixed and arbitrary
in its shape, but contrary to the single-phase situation it is now constituted by several
phase volumes Vk ⊆ V

⋃
k=ϕ,φ,... Vk, each possessing an interface SI separating it from

its neighboring phase. In consequence, the control surface S is composed of phase
surfaces Sk ⊆ S

⋃
k=ϕ,φ,... Sk that come into existence where the control volume V cuts

the phase volumes Vk. Note further that generally more phases, i.e., a third phase
κ, might be present within the control volume. However, without loss of generality3
these will be dropped in the remainder of this thesis when discussing the interaction
of two arbitrary phases ϕ and φ. In the following, the former phase, i.e., phase ϕ,
shall be examined, whereas the latter phase φ is considered as an arbitrary phase
neighbor.

Generic Transport Equation in a Two-Phase System

Owed to the presence of two or more phases within the control volume V , it is
now necessary to distinguish among the contributions of phases to the transport
3 One or more additional phases would be treated analogously without imposing additional com-

plexity.
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2.1. Local Instantaneous Bulk Conservation Equations

Figure 2.2: Control volume – Two-phase flow.

quantity Φ. For this purpose the balances have to be considered over the phase
surfaces Sk and the phase volumes Vk – with k ∈ [ϕ, φ].

Examining the transport of Φ within the control volume V , one has to bear in mind
that due to the presence of two phases, interfacial contributions have to be taken
into account that stem from both phases ϕ and φ. As will be seen, these in effect
couple the bulk phase transport equations derived in the antecedent of this section.
The overall balance equation for Φ within the control volume V holding two phases
ϕ and φ reads:

∑
k=ϕ,φ

(
d

dt

∫
Vk(t)

ρΦ dV

)
=−

∑
k=ϕ,φ

∫
Sk(t)

nk• (ρΦU) dS

−
∑
k=ϕ,φ

∫
Sk(t)

nk• (−ΓΦ,d∇Φ) dS

+
∑
k=ϕ,φ

∫
Vk(t)

SΦ (Φ) dV

+ 1
2
∑
k=ϕ,φ

∑
j=ϕ,φ

(1− δjk)
∫
SI,jk(t)

SΦ,I (Φ) dS. (2.19)

The first three terms hold the already introduced bulk (phase interior) contributions
within the phases ϕ and φ, respectively. The last term on the r.h.s. of equation
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2. Theory

2.19 represents the coupling interfacial source term. δjk herein denotes Kronecker’s
delta.

Again applying Leibniz’ theorem according to equation 2.2, e.g., for phase ϕ, yields
d

dt

∫
Vϕ(t)

ρΦ dV =
∫
Vϕ(t)

∂

∂t
(ρΦ) dV

+
∫
SI,ϕφ(t)

nI,ϕφ •UI,ϕφ (ρΦ) dS, (2.20)

where the last term on the r.h.s. arises since the surface displacement velocity UI,ϕφ

of the phase interface SI,ϕφ usually is non-zero.

The Gauss’ theorem according to equations 2.3 and 2.4, for instance resulting for
phase ϕ results in∫

Sϕ(t)
nϕ• (ρΦU) dS =

∫
Vϕ(t)

∇• (ρΦU) dV

−
∫
SI,ϕφ(t)

nI,ϕφ • (ρΦU) dS and (2.21)∫
Sϕ(t)

nϕ• (−ΓΦ,d∇Φ) dS =
∫
Vϕ(t)

∇• (−ΓΦ,d∇Φ) dV

−
∫
SI,ϕφ(t)

nI,ϕφ • (−ΓΦ,d∇Φ) dS. (2.22)

Hence, the balance equation 2.19 can be compacted as

0 =
∑
k=ϕ,φ

∫
Vk(t)

[
∂

∂t
(ρΦ) +∇• (ρΦU)−∇• (ΓΦ,d∇Φ)− SΦ (Φ)

]
dV

− 1
2
∑
k=ϕ,φ

∑
j=ϕ,φ

(1− δjk)
∫
SI,kj(t)

[ρΦ (U−UI,kj) •nI,kj − (ΓΦ,d∇Φ) •nI,kj + SΦ,I ] dS.

(2.23)
As equation 2.23 is valid for arbitrary phase volumes Vk and arbitrary configurations
of phase interfaces SI,ϕφ within V , the two terms and therein the integrands can be
set to zero interchangeably. Thus, the local instantaneous generic transport equation
can be deduced from the first integrand (representing the bulk phase contributions).
I.e., for phase ϕ it might be stated

∂ρΦ
∂t

+∇• (ρΦU)−∇• (ΓΦ,d∇Φ)− SΦ (Φ) = 0, (2.24)

as it has already been the result for the single phase case (equation 2.9). However,
considering the two- or multi-phase case, there is always coupling with (at least)
another transport equation of the same type due to the presence of a neighboring
phase φ. Hence, interfacial jump conditions have to be specified from the second
term of equation 2.23 in order to close the system, as professed in the next section.
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2.2. Local Instantaneous Interfacial Jump Conditions

Table 2.2: Coefficients for the generic transport equation (two-phase
flow).

balance Φ ΓΦ,d SΦ SΦ,I

mass 1 0 0 0

momentum U µ ρg−∇p ‖pnI‖ − σκI,ϕφ nI,ϕφ −∇I,ϕφσ

species xi ρDi R̂i 0

M/ρ ci M Di M Ri 0

2.2. Local Instantaneous Interfacial Jump Conditions

As a consequence of different phases being present in the control volume V , coupling
relations have to be specified. This results in local instantaneous jump conditions
for a generic transport quantity Φ. Note that the generic condition as set out in the
second term of equation 2.23 is independent of the particular choice of the phases
ϕ and φ. ϕ and φ are interchangeable, i.e., nI,ϕφ = −nI,φϕ . Hence, this symmetry
can be utilized to simplify the derivation. Introducing a jump notation, where ‖ · ‖
shall denote a jump across the interface SI as ‖f‖ ≡ fI,ϕ − fI,φ, the second term in
equation 2.23 reveals

‖ρΦ (U−UI) •nI − (ΓΦ,d∇Φ) •nI‖ = −SΦ,I , (2.25)

where the subscript I in SΦ,I has been adopted as a short form of I, ϕφ for the sake
of readability.

Now equation 2.25 enables to formulate the local instantaneous jump conditions for
mass, momentum and chemical species. It follows by use of table 2.2:

• local instantaneous interfacial jump condition for mass

‖ρ (U−UI) •nI‖ = 0. (2.26)

Equation 2.26 simply states that mass transfered from phase ϕ to phase φ is the
same in its value but opposite in direction with respect to the mass transfered
from phase φ to phase ϕ. Hence, no mass is lost.

• local instantaneous interfacial jump condition for momentum

‖ρU (U−UI) •nI − σ•nI‖ = σκI,ϕφ nI,ϕφ +∇Iσ, (2.27)

where ∇I ≡ (I− nI,ϕφ nI,ϕφ ) •∇ denotes the interface gradient operator. This
becomes relevant solely when the interfacial tension σ generally depends on the
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interface composition or temperature. However, considering σ to be uniform
this term might be neglected henceforth. Thus, the surface tension is assumed
to be constant, not varying along the interface.

Now, decomposing the total stress tensor σ in its isotropic (static) and de-
viatoric (dynamic) component according to equation 2.14, yields the dynamic
condition:

‖ρU (U−UI) •nI − (pnI + τ •nI) ‖ = σκI,ϕφ nI,ϕφ . (2.28)

From this, it is evident that in the absence of interfacial mass transfer, the
surface tension force is solely balanced by pressure and stress forces.

• local instantaneous interfacial jump condition for chemical species

‖ (−Di∇ci) •nI‖ = 0. (2.29)

In most cases the species i transfered across the interface will be exposed to
different solubilities in the phases pertaining to each side of the interface. In
consequence, another interfacial jump relation is needed in order to account for
an interfacial concentration jump of transferred species. It is common practice
to do so by means of a simple distribution relation known as Henry’s law, which
reads

‖ci‖ = ci;I,ϕ · (1−He) ⇔ He = ci;I,φ
ci;I,ϕ

. (2.30)

2.3. Concept of Conditioning for Phase Discrimination

In order to realize the immersed interface concept, i.e., to derive governing equations
that are valid throughout the entire flow domain of a two-phase system, one needs to
discriminate one phase from each other selectively. This is accomplished by making
the local instantaneous equations conditional on the presence of a particular phase
before examining the balance of conserved quantities over the control volume. In
doing so, it is achieved that only those parts within the control volume, that do
contain the particular phase under consideration, contribute to the (conditional)
conservation equation.

2.3.1. Conditioning and Conditioned Quantities

Conditioning of the arbitrary general local instantaneous quantity Φ is provided by
multiplication with the so-called phase indicator function Iϕ, that takes the value one
within phase ϕ and zero elsewhere. The product IϕΦ is generally entitled conditioned
quantity and is denoted Φϕ in the remainder of this thesis, Φϕ ≡ IϕΦ.
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2.3. Concept of Conditioning for Phase Discrimination

In this view, the terms conditioning and conditional are used henceforth in the
meaning: use of the phase indicator function in order to pick out an arbitrary property
pertaining to the phase of interest while ignoring this property in other phases. It
has however to be stressed that both Φ and Φϕ are defined throughout the domain,
and, thus, are promoting the immersed interface concept consistently and to the
full extent, if the phase indicator function is chosen properly – as set forth in the
following.

2.3.2. Phase Indicator Function and Phase Distribution Function

The definition of the phase indicator function Iϕ (x, t; µ)4 is given by equation 2.31.

Iϕ (x, t; µ) =
{

1 if x ∈ ϕ at time t in realization µ
0 otherwise,

(2.31)

where µ denotes the realization of interest in an ensemble of possible interface
configurations within the control volume. However, aiming at a deterministic (rather
than probabilistic) framework to describe phenomena within a two-phase system,
we might restrict ourself to one realization – thus, µ = 1. Mathematically the phase
indicator function Iϕ may be expressed as Heaviside unit step function H operating on
the so-called phase distribution function – a continuous scalar property, that exhibits
the local instantaneous position of the interface. This phase distribution function,
denoted as fϕ henceforth, might be stated more precisely as the signed distance
function from the interface that is found to be positive within phase ϕ of interest,
negative in the other phase(s) and zero at the interface itself. Thus,

Iϕ (x, t) ≡ H
(
fϕ (x, t)

)
. (2.32)

While in a multiphase system (arbitrary number of phases) the phase distribution
function needs to be defined for each phase present, the situation considerably
simplifies in the particular case of a two-phase flow, because Iϕ = H

(
fϕ
)
and

Iφ = H
(
−fϕ

)
. This directly implies that Iϕ + Iφ = 1, meaning that only one

phase distribution fϕ and subsequently one phase indicator function Iϕ needs to
be considered in order to completely describe the local-instantaneous position of the
interface(s) and phases within a two-phase system.

Note further that Iϕ is piecewise continuous, hence, its integral as well as its spatial
and temporal derivatives are clearly defined.

4 Note that Weller [6, 7] uses an inconsistent notation: generally employing conditional ensemble-
averaging but denoting the phase indicator function as Iϕ (x, t) implies the existence of only one
realization. Ensemble-averaging would not be necessary at all in that case.
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2.3.3. Interface Delta Function and Interface Transport Equation

Since after conditioning temporal and spatial derivatives of the phase indicator
function are to be found in the local instantaneous conservation equations and jump
conditions, a closer look on their interpretation seems to be of avail.

spatial The spatial derivative of the phase indicator function, ∇Iϕ, can be expressed
as

∇Iϕ (x, t) = −δI
(
fϕ (x, t)

)
∇fϕ (x, t)

= −δI
(
fϕ (x, t)

) ∣∣∇fϕ (x, t)
∣∣nI,ϕφ

= −δI
(
fϕ (x, t)

)
nI,ϕφ , (2.33)

since the eikonal identity
∣∣∇fϕ

∣∣ = 1 holds for the signed distance function. This
allows the interpretation of an interface delta function ∇Iϕ (x, t). As can be
seen, this function clearly excises the interface, on which it becomes the Dirac
delta function5of the phase distribution function δI

(
fϕ (x, t)

)
in the direction

normal to the interface pointing towards phase ϕ by (−nI,ϕφ ). Elsewhere
(within the phases) ∇Iϕ (x, t) becomes zero.

temporal For the temporal derivative of the phase indicator function it is instructive
to consider the temporal evolution of Iϕ by following it along its path while
moving with a – generally space and time dependent – velocity field that is the
interfacial velocity UI :

∂Iϕ
∂t

+ UI,ϕφ•∇Iϕ = 0, (2.34)

revealing the simple physical fact that the phase interface travels with the
interfacial velocity. Tantamount to this, the phase indicator function can
be interpreted as Lagrangian invariant propagating according to the interface
transport equation6 2.34.

5 Note in passing that δ will be used purposively with two different meanings: On the one hand δ
will hold as a Dirac delta function – as used above:

δI ≡ δ (x− xI , t) ,

denoting any point on the phase interface. Subsequently, ΦI,ϕ ≡ δIΦϕ represents the contribution
from the general arbitrary quantity Φ on the ϕ-side of the interface [8]. On the other hand δ is
used as Kronecker’s delta as well:

δϕφ ≡
{

1 if ϕ = φ

0 if ϕ 6= φ.

Note that from a mathematical point of view, the Dirac delta function might be seen as a
continuous analog of Kronecker’s delta, which is used in a discrete manner, i.e., in order to
account for alternating phase contributions.

6 also: topological equation
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2.4. Averaging Procedures

The last section has been devoted to the detailed derivation of a local instantaneous
set of governing equations for mass, momentum and chemical species in a two-phase
system, starting from first principles that are the local instantaneous conservation
(bulk phase) and interfacial jump relations (phase interface). Now we have to turn
to the development of a sound averaging technique, the issue around which is a
long-standing one in CMFD.

Hence, beforehand some aspects might be worth mentioning for comprehension in the
further course of this thesis. Thus, a rather comprehensive yet necessary discussion
about averaging in general is provided in the following.

2.4.1. Motivation of Averaging

Several numerical methods have been developed in order to solve the local instanta-
neous conservation equations at a local instantaneous (microscopic) level – often being
referred to as Direct Numerical Simulation (DNS) methods. However, the ’exact’
numerical solution of the detailed (local instantaneous – microscopic) evolution of
interfacial structures in two-phase flow systems is utmost complex and thus a quite
challenging task. This is owed to both physical and numerical aspects [9] – corollary
note 2.1.

Corollary Note 2.1

• numerical restrictions:
Despite their efficiency it is evident that DNS methods need a sub-
stantial amount of computation even for simple and small cases, while
especially the interfacial boundary treatment needs considerable care.
Hence, the numerical algorithm is often difficult and tedious. There-
fore application of these methods is restricted to a very limited number
of problems, aiming at a basic understanding of physics in proximity
of interfaces.

• physical restriction:
The idealization of interfaces being geometrical surfaces over which the
fluids’ properties change abruptly – resulting in intermittent structures
with sharp discontinuities – is generally problematic, too. Numerical
methods based upon this idealizing assumption encounter a severe
problem when aiming at the simulation of so-called topological changes
(e.g., coalescence and breakup) in two-phase systems or phase forma-
tion (e.g., nucleation in boiling flows) in initially single-phase systems.
In these cases the model becomes singular.
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Owing to the complexity in both physics (modeling singularities due topological
changes or phase change) and numerics (computational costs and complex algorithms
for interfacial boundary treatment) DNS methods are often disapproved. The exact
solution approaching all details of the two-phase flow for most cases of practical
interest is neither possible nor deemed to be necessary enough to be desirable [10]:
it is rather well-established practice for most practical purposes to apply some sort
of averaging procedure to the local instantaneous conservation equations and related
jump conditions. This results into averaged governing equations for a broad class
of two-phase flow problems avoiding the aforementioned problems at the cost of
introducing the necessity of modeling and resolution constraints – as set out in the
following.

2.4.2. Conceptual Approaches

In general, averaging can be seen as a low-pass filter procedure applied on a field
at the scale of its fluctuating structures, by means of which solely high-wavenumber
portions of the field under consideration are selectively removed. In consequence, this
considerably reduces complexity and computational efforts when solving for averaged
(instead of local instantaneous) equations.

However, as already intimated, averaged equations have become unclosed due to the
applied averaging by means of additional a priori unknown terms stemming from the
averaging procedure itself. Hence, averaging is always at the expense of the necessity
of introducing sound closure models (relations for these a priori unknown terms).
The closure in turn needs to account for the physics of those portions that have been
filtered away and recover lost informations on an appropriate and physically sound
basis.

There is a multitude of various model frameworks in which averaging is performed
temporally (over an averaging time interval), spatially (over an averaging volume
based upon an averaging length scale), statistically (over an ensemble representing
a set of realizations) or by some combinations of these. Hence one could categorize
averaging techniques basically into

• time-averaging,
• volume-averaging and
• ensemble-averaging.

It is widely recognized that the particular choice of an averaging technique solely
affects the physical meaning of terms constituting the averaged governing equations
and in consequence impair the physical interpretation of the subsequent closure
models [11]. Nonetheless the mathematical rigour and the general structure is
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retained – independent from the chosen averaging technique. However, as stated
before, one generally has to comply with certain restrictions on the applied temporal
and spatial resolution when employing averaging to local-instantaneous conservation
equations. This clearly is related to the conceptual approach chosen for averaging.

Now before expatiating upon averaging approaches, it is advisable first to have a look
at prevalent definitions for disambiguity [3]: Let R (often also Ω) be a space domain
with x ∈ R being a position vector; further denote T as a time domain and E as
event space respectively, with t ∈ T being the time and µ ∈ E being a particular
realization of the process P under consideration. Then, let Φ (x, t; µ) be an arbitrary
general local instantaneous quantity, i.e., fluid property, any other scalar, vector or
tensor of any rank at point (x, t) in realisation µ. Φ shall be defined in the entire
fluid domain.

Henceforth the aforementioned basic averaging approaches shall be defined as follows
when being applied on Φ:

• volume-averaging:

ΦV ≡ 1
V

∫
V

Φ (x + η, t; µ) dxη with V ⊂ R, (2.35)

where V denotes the averaging volume based on an averaging length scale
∆, which is invariant in time and space. The location vector x points to the
centroid of V , whereas η is used as relative position vector to locate any position
within V relative to its centroid.

Volume-averaging is subject to the restrictions [3, 5, 12]

Lm � ∆� LM , (2.36)

where Lm denotes the length scale of the local instantaneous (microscopic
fluctuating) structures, i.e., length scales of particles within a two-phase sys-
tem, whereas LM represents the characteristic macroscopic length scale of the
system, i.e., the dimension of the flow domain.

This means on the one hand, that it must be ensured that V is sufficiently
large and infinitesimal translations do not bias the magnitude of the averaged
quantities within the volume V . On the other hand, V must be chosen much
smaller than the characteristic dimension of the system under consideration in
order to ensure that using averaged quantities still represents local variations
within the system sufficiently. Thus, the pivotal requirement for the choice of
the size of the averaging volume V is to be still representative.
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• time-averaging:

ΦT ≡ 1
T

∫
T

Φ (x, t; µ) dtτ with T ⊂ T , (2.37)

where, analogously to the volume averaging procedure, T denotes an averaging
time interval over which Φ is averaged temporally.

In a uniform manner as for the averaging volume, restrictions are imposed on
the averaging time scale T as well [3, 5, 12]:

Tm � T � TM (2.38)

Essentially the inequalities 2.38 reflect the requirements that the time averaging
period needs to be significantly larger than microscopic (fluctuating) time scales
Tm, but smaller than the characteristic time scale of the flow TM .

• ensemble-averaging:

ΦE ≡ lim
N→∞

1
N

N∑
µ=1

Φ (x, t; µ) with N ⊂ E(P)

=
∫
E

Φ (x, t; µ) dm(µ), (2.39)

where E denotes the set of all possible realizations of the system, N being
its size (total number of possible realizations) and µ representing a concrete
realization observed during the process P.

As indicated by dm(µ) – the probability density on the set of all events E –
the ensemble-average view of a physical process allows for an interpretation in
terms of statistical repeatability. I.e., all observed realizations µ might be only
seen as approximations of the ideal one: the expectation considering a very
large set of realizations. Thus the ensemble average solely requires N → ∞
to be representative; in particular, it is not subject to any spatial or temporal
restrictions.

2.4.3. Averaging Rules

The three averaging approaches7, as defined in the preceding discussion, have been
established as rigour and sound mathematical procedures. Thus, they obey cer-
tain averaging rules, namely the Leibniz’ and Gauss’ rules (commutation) and the
7 For the sake of brevity and ease of reading, the averaging operator shall further be denoted with

a simple overbar not distinguishing between different averaging approaches as long as generally
valid characteristics are subject of discussion.
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Reynolds’ rules (linearity and idempotence). Let Ψ (x, t) be a second general arbi-
trary quantity – scalar or tensor of any rank – beside Φ (x, t); then averaging obeys
the following averaging rules [4, 13]

commutation:
∂Φ
∂t

= ∂Φ
∂t

, (2.40)

∇Φ = ∇Φ , (2.41)
linearity:

Φ + Ψ = Φ + Ψ , (2.42)
cΦ = c Φ and (2.43)

idempotence:

Φ Ψ = Φ Ψ , (2.44)

where c denotes an arbitrary constant scalar being both temporally and spatially
fixed.

Note that for the above equalities to render generally valid, specific constraints on
the averaging operation have to be fulfilled. Clearly, a spatial averaging operator
being constant in time will commute with time derivatives. Moreover, a spatial
averaging operator that is constant in space commutes with spatial derivatives. I.e.,
in case of volume-averaging the Gauss’ rule is only valid, if the underlying spatial
averaging operator is based upon a spatially homogeneous filter, that is the spatial
filter width (e.g., size of the averaging volume) does not depend on the spatial
position. Obviously, an analog constraint certainly applies to the Leibniz’ rule and
temporal filtering (time-averaging).

Considering volume-averaging, however, non-homogeneous spatial filters are surely
interesting for adequately capturing relevant scales, that often vary significantly at
different locations of the flow domain. As non-homogeneous spatial filtering does not
commute with the spatial derivative, this does introduce a so-called commutation
error or – from another point of view – an additional term to model. For single-
phase Large Eddy Simulations (LES) this is a well known issue, for instance discussed
in [14]. However, the situation for a general (turbulent) two-phase system is found to
be more complex compared to single-phase phase turbulence: turbulence near phase
interfaces exhibits distinct vortical structures rendering it anisotropic – backscatter
of energy from unresolved to resolved scales [15, 16] (not considered in [17], for
instance).

The undue modeling complexity that would result when employing a non-uniform
spatial filter surely overweights its use. Hence for the remainder of this thesis,
the averaging is performed assuming a constant uniform spatial filter. Moreover,
particularly for two-phase flows being the pivotal topic of this study, the commutation
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error might be assumed negligible – especially compared to modeling uncertainties
surely introducing the main source of possible errors in this context. Hence, this issue
shall not be addressed further within this study. Nevertheless, it is emphasized that
in some cases the commutation error should have perceivable influence, that has yet
not been in the focus of scientific research.

2.4.4. State-of-the-Art – A critical Review

It is commonly accepted that averaged model equations based on local instantaneous
conservation equations for two-phase flows are far less developed and less reliable to
catch up physical reality than their single-phase counter-parts, that employ the same
averaging techniques in order to model turbulence [18]. At a first sight, this is surely
caused by the lack of a clear mathematical framework some of these models suffer
from. Moreover, there are considerable difficulties in both physical interpretation and
(thus) the concrete modeling of many terms of the averaged governing equation.

Over the last two decades time- and volume-averaging have been widely adopted
by many workers due to their straightforward, physical meaningful and direct in-
terpretability of unclosed terms. However, there are difficulties when considering
the modeling of these a priori unknown terms for cases of practical interest. This
is caused by a lack of sound examination and thus the conclusions drawn from the
interpretation of these terms. For instance, considering volume-averaging in detail,
the problem class seems to be two-fold:

1.) The most serious problem with both time- and volume-averaging concerns
the presupposition that one has to obey certain conditions imposed upon the
resolution of the time or space domain for ameaningful time- or volume-average.

However, considering the volume-averaging technique, the prerequisite of a
clear scale separation within the spatial domain cannot be observed in many
cases of practical interest. The characteristic spatial dimension of a two-phase
flow might approach the macroscopic scale of the system as the flow evolves.
Nigmatulin [19] recognizes this problem of changing scale regimes in both
directions emphasizing the need of a:

"elementary macrovolume. . . the characteristic linear dimension of
which are many times greater than the nonuniformities. . . , but at
the same time much less than the characteristic macrodimension of
a problem."

2.) To make it worse, for the most practical cases length and time scales are
inherently related to each other. As a matter of fact, a characteristic linear
dimension of a two-phase flow most certainly corresponds to its characteristic
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time and thus can not be regarded in a decomposed manner. The presumption
of decoupling of temporal and spatial scales is seldom satisfied.

Consequently, volume-averaged conservation equations are usually sought to be
applicable in the case of highly transient flows since they are ’instantaneous’
that is they do not base on time-averaging. But restrictions on spatial scales
concomitantly affect the effective temporal resolution of the resulting equations
when applied to flow under consideration, which is rather seldom addressed.

Therefore, in a strict sense, a volume-average should only be applied on model systems
that clearly provide a scale separation within the spatial domain and ensure that the
spatio-temporal state of the system can be decomposed and regarded as decoupled
throughout the process under consideration.

Now, if one moves further from this model system to a realistic flow scenario of
practical interest, two questions arise: 1.) As utilizing either time- or volume-
averaging on its own seems to be troublesome, does a combination of these well-
established approaches overcome the aforementioned problem? and 2.) Does the
more general ensemble-averaging technique state an alternative?

1.) Many authors address the shortcoming issued under the first question by
repeatedly applying volume- and time-averaging on the microscopic equations.
Usually the first averaging technique being imposed is the volume-average.
The resulting instantaneous volume-averaged equations however, are subject
to temporal fluctuations caused by turbulence. Therefore, the second average
that is commonly applied is the time-average. The result of this so-called
double-averaging process is believed to yield governing equations that exhibit
smooth transitions in both the temporal and spatial domain.

However, double-averaging introduces terms, that are complex to interpret and
thus less than straightforward to model. Moreover, considering two-phase flows
specifically against the background of intrinsically tied temporal and spatial
scales it is simply impossible to separate two-phase (temporal) unsteadiness
and (spatial) intermittence from corresponding characteristics in turbulence –
as it initially has been intended by those authors when introducing the double-
averaging. Hence, to the author’s point of view, it is rather evident that double-
averaging looses its ground of validity for many practical cases; that is in the
event that volume-average and time-average domain are found to overlap or to
be close to each other.

2.) Another avenue that is suggested by some workers is to employ the more
fundamental and mathematical rigour ensemble-averaging procedure, because
this technique is not subject to any spatial or temporal restrictions while
remaining the physical significance and interpretability of resulting unclosed
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terms. This in turn alleviates modeling. Moreover, it is argued that both the
time- and the volume-average might be seen as special case of the ensemble
average (ergodic hypothesis8).

Considering the ensemble-average, the problem has its seeds in the experimental
validation base being very rarely. Despite the advantages and benefits that
might be expedient from a theoretical point of view, to the author’s opinion, it
is a questionable practice to perform simulations based upon ensemble-averaged
governing equations without the option of a sound validation study, which has to
provide ensemble-averaged data from statistically representative experiments.

2.4.5. Conclusion, Scope & Objectives

In view of the antecendent discussion, the above approaches are abandoned while
the central approach exposed in the remainder of this thesis is entirely based on
conditional volume-averaging (section 2.5) [21]. The two-phase flow model resulting
from this averaging procedure shall possess two characteristics:

• generality and flexibility
The underlying concept is required to be independent of the specific nature of
the two-phase flow under consideration. I.e., the derivation of the governing flow
equations is independent from the particular flow type, the influence of which
is transferred and grouped into closure terms being modeled appropriately.

• stability and robustness
As a consequence of conditioning and volume-averaging, each phase is consid-
ered as independently interpenetrating each other (Eulerian-Eulerian two-fluid
framework), while exchanging mass, momentum and species, which is modeled
according to the underlying flow type.

Moreover, the local-instantaneous governing equations are transferred into
their conditional volume-averaged counter-parts, which in effect translates the
originally sharp interfacial jump conditions into volume-averaged interfacial
conditions, that consistently promote a smooth but still rapid transition of
material and flow properties – as depicted in figure 2.3 for a demanding (seg-
regated) two-phase flow scenario. The interfacial surface is replaced by an
interfacial transition region. This in turn alleviates the shortcoming of sharp
interface methods and facilitates both stability and robustness of the underlying
numerical solution procedure.

8 The interested reader is referred to [20] by A. Patrascioiu.

42



2.4. Averaging Procedures

Figure 2.3: Sharp vs. continuous interface representation.

The choice of conditional volume-averaging seems beneficial and reasonable to the
author for three reasons:

1.) the aforementioned advantages with respect to both generality and flexibility
and to stability and robustness.

2.) the possibility to validate against experimental data being consistent (and thus
comparable) to numerical results obtained from a conditional volume-averaged
two-phase flow model.

3.) the conceptual proximity to the Large Eddy Simulation (LES) approach – as
set out in the following section. This enables to the consistent treatment of
turbulent two-phase flows, which certainly states the common case in industrial
two-phase apparatus.

The next section exposes in considerable detail the consistent derivation of this
modeling framework that will further be applied to various flow types at different
scales. Therefore, a straightforward derivation of a general set of conditional-averaged
governing equations based upon already derived local instantaneous conservation
equations is presented in the remainder. This is found to be useful and instructive
approaching the physical origin, and thereby the numerical treatment of model terms
stemming from the averaging procedure.
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2.5. Concept of the Conditional Volume-Averaging
Technique

2.5.1. Averaged Arbitrary General Quantities

Starting from an unconditioned arbitrary general quantity Φ, which represents any
physical property, scalar or tensor of any rank, conditioning and subsequent volume-
averaging yields

IϕΦ = Φϕ = 1
V

∫
V
Iϕ (x + η, t) Φ (x + η, t) dxη. (2.45)

Since Iϕ exhibits compact support, that is it takes the value unity within phase ϕ
while it is zero elsewhere, equation 2.45 can be rewritten as

IϕΦ = Φϕ ≡
1
V

∫
Vϕ

Φ (x + η, t) dxη

= Vϕ
V

1
Vϕ

∫
Vϕ

Φ (x + η, t) dxη

= αϕ Φϕ
, (2.46)

where αϕ has been defined as volumetric phase fraction or phase volume fraction,
αϕ ≡ Vϕ/V , and the so-called phasic or intrinsic average has been found to be defined
according to

Φϕ ≡ 1
Vϕ

∫
Vϕ

Φ (x + η, t) dxη. (2.47)

As can be seen, IϕΦ = Φϕ = αϕ Φϕ9 clearly relates the phasic average Φϕ of
quantity Φ with the volume average of the conditioned quantity Φϕ – linearly over
αϕ.

This gives rise to the physical view of conditional volume-averaging, that is of a
procedure that spreads the contribution of phase ϕ uniformly over the entire averaging
volume V as illustrated in figure 2.4a and 2.4b, superposing with the contribution of
phase φ being averaged alike. Thus, Iϕρ = αϕ ρ

ϕ, for instance.

2.5.2. Analogy of Volume-Averaging Technique and Spatial Filtering in
LES

Examining equation 2.47, a clear conceptual relation between the conditional volume-
averaging procedure and the spatial filtering process becomes evident. The latter is
9 Note that, in contrary to Weller [6, 7], the phasic average is denoted by an superscript, i.e.,

attached to the averaging operator. It has to be emphasized, that Weller’s notation certainly leads
to confusion, since it does not allow to distinguish a conditioned average Iϕ Φ = Φ ϕ =

(
Φ
)
ϕ

from the phasic average IϕΦ = Φϕ, however Φ ϕ 6= Φϕ.
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(a) physical domain Ω
(local-instantaneous).

(b) computational domain
(volume-averaged).

Figure 2.4: Conceptual approach of the conditional volume-averaging
procedure.

well-known and commonly applied in the Large Eddy Simulation (LES) for single-
phase turbulence modeling:

IϕΦG (x, t) =
∫
Ω
G (r, ∆) Iϕ (x + r, t) Φ (x + r, t) dr, (2.48)

with G (x + η, ∆) denoting the filter kernel (operator) corresponding to a three-
dimensional box (or top-hat) filter, that exhibits a compact support10 according to

G (r, ∆) ≡ 1
∆3H

(
∆

2 − |r|
)

=
{ 1
V if r ∈ V
0 otherwise

with
∫
Ω
G (r, ∆) dr != 1. (2.49)

By revisiting equations 2.35 and comparing to 2.47 (with η = x + r), the conclusion
can be drawn that Φϕ

V and Φϕ
G are to be taken identical, i.e., Φϕ

V = Φϕ
G.

However, note that this is only valid for G being a three-dimensional box filter kernel.
For instance, employing any other filter kernel that might be commonly used in LES
modeling, e.g., a Gaussian filter according to

GG (r, ∆) =
√

6
π∆2 exp 6r2

∆2 , (2.50)

would result in far-field contributions to the filtered quantity. Consequently, a filtered
phase indicator function could no longer be interpreted as volumetric phase fraction
10 G shall represent a localized filter function being only large for small r’s.
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within the control volume V . Thus, the physical view as depicted in figure 2.4 would
loose its significance.

It is further important to stress the fact, that the spatial filter to choose within the
context of two-phase flow modeling needs to be a homogeneous one – as already
has been postulated for the averaging rules (section 2.4.3) as a necessity for the
derivation of conditional volume-averaged governing equations. The reason for this
rests in the two-phase flow exhibiting non-uniformity and anisotropy near a fluid
interface. Consequently, a homogeneous spatial filter needs to be employed in order
to avoid unduly complicated modeling.

Moreover, as will be seen through the course of chapter 4, there is an intimate
relationship between the averaging length scale (filter width ∆) used for volume-
averaging (spatial filtering) in physical space and the characteristic length scale q of
a finite volume in computational domain. If not taken into account, the governing
equations (more exactly the closure) loose validity and thus the numerical procedure
unavoidably leads to an unphysical solution. Hence, it has to be emphasized that
this relationship inherently ties together the mathematical representation and the
numerical solution methodology of the physical (continuum mechanical) problem.

For the remainder of this thesis a sufficiently well-behaved spatial filter (homogeneous
with finite support) will be presumed when switching between the wordings spatial
filtering and volume-averaging.

2.5.3. Averaged Products and Fluctuations

Generally the averaging of a term containing the product of local instantaneous
(thus, on an averaging scale fluctuating) quantities Φ and Ψ gives rise to correlations
between their corresponding fluctuations.

E.g., for a single local instantaneous (fluctuating) quantity Φ (x, t) one may separate
its average from fluctuating parts by Reynolds decomposition according to

Φ (x, t) = Φ (x, t) + Φ′ (x, t) , (2.51)

where Φ′ (x, t) denotes the fluctuating part with respect to the applied averaging
scale. It is Φ′ (x, t) != 0.
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Now, for the average of the product ΨΦ one obtains

ΨΦ =
(

Ψ + Ψ′
) (

Φ + Φ′
)

= Ψ Φ + Ψ Φ′ + Ψ′Φ + Ψ′Φ′

= Ψ Φ²
since Ψ Φ = Ψ Φ

+ Ψ Φ′ + Φ Ψ′´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0, since Φ′= Ψ′=0

+ Ψ′Φ′

= Ψ Φ + Ψ′Φ′ (2.52)

As can be seen, the last term represents the average of the product of two fluctuating
properties and thus needs modeling in order to arrive at a closed expression.

However, one may avoid this unclosed term by a more appropriate (weighted) de-
composition of Φ (x, t) based on the average of ΨΦ:

Φ (x, t) = ΨΦ
Ψ
− Ψ′Φ′

Ψ
≡ Φ̃ + Φ′′, (2.53)

where Φ′′ (x, t) represents the fluctuation with respect to the weighted average, with

Φ′′
!
6= 0 but ρ̃Φ′′ != 0 (for the weight Ψ = ρ, for instance). Now the average of the

above product is found to be

ΨΦ = Ψ Φ̃ , since Φ̃ ≡ ΨΦ
Ψ

, (2.54)

obviously omitting the additional correlation term while remaining the physical
significance of all constituting terms, if the weight Ψ is chosen appropriately.

For the course of following-up derivations, it is advisable to introduce an appropriately
weighted average on this basis, namely the so-called phase-weighted average11 or
density-weighted (Favre) average, with the weight being chosen as Ψ = Iϕρ = ρϕ:

Φ̃ϕ ≡ IϕρΦ
αϕ ρϕ

. (2.55)

In this view, both phasic (intrinsic) and phase-weighted conditional fluctuations are
introduced according to

Φ′ϕ ≡ Φ− Φϕ and (2.56)
Φ′′ϕ ≡ Φ− Φ̃ϕ

, (2.57)

that are the differences between the local instantaneous and corresponding phasic or
phase-weighted volume-averages of the property Φ12.
11 not phasic average!
12 Note that ϕ is used as superscript to indicate that the fluctuation occurs around their corre-

sponding averages, contrary to the notation of Weller [6, 7].
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Hence, for the conditional volume-average of products one obtains

IϕΨΦ = αϕ ΨΦϕ = αϕ Ψϕ Φϕ + αϕ Ψ′ϕΦ′ϕϕ and (2.58)

IϕρΨΦ = αϕ ρΨΦϕ = αϕ ρ
ϕΨ̃Φ

ϕ = αϕ ρ
ϕΨ̃ϕΦ̃ϕ + αϕ ρ

ϕΨ̃′′ϕΦ′′ϕ
ϕ

. (2.59)

2.5.4. Averaged Phase Indicator Function

Considering mass as transport quantity, and substituting Φ = 1 in equation 2.46
(compare to table 2.2) reveals

Iϕ ≡ αϕ, (2.60)

where αϕ denotes the volumetric phase fraction or phase volume fraction pertaining
to phase ϕ within V 13 – as depicted schematically in figure 2.5a.

Similarly to the phasic volume-average Φϕ, it is further common to define the phase-
weighted (density-weighted) average. From the equations 2.54 and 2.58 it follows:

IϕρΦ = αϕ ρΦ
ϕ = αϕ ρ

ϕ Φϕ + αϕ ρ′Φ′
ϕ

= αϕ ρ
ϕΦ̃ϕ

. (2.61)

In the same line, the density-weighted volume fraction or phase mass fraction α̃ϕ can
be defined as

α̃ϕ ≡
αϕ ρ

ϕ

ρ
, (2.62)

where ρ denotes the mixture density in the averaging volume V .

2.5.5. Averaged Differential Operators

As the local instantaneous conservation equations hold spatial and temporal deriva-
tives of their dependent variable, it is instructive to have a closer look at these
derivatives when being conditioned and averaged.

13 Other averages evidently have to be interpreted in a different way. E.g., αϕ = Iϕ
T stemming from

a time-averaging procedure expresses the phase residence time fraction of phase ϕ that alternately
passes a point competing with the other phase φ – for a two-phase scenario (figure 2.5b). The same
holds for ensemble-averaging where Iϕ

E denotes a phase fraction representing the expectation
(probability) of phase ϕ being present at the sampling point (x, t) under consideration (figure
2.5c).
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(a) volume-averaging technique.

(b) time-averaging technique.

(c) ensemble-averaging technique.

Figure 2.5: Illustration of basic averaging techniques.
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Figure 2.6: Illustration of the interfacial surface averaging procedure.

spatial Conditioning and volume-averaging of ∇Φ yields using equation 2.33:

Iϕ∇Φ = ∇IϕΦ − Φ∇Iϕ = ∇ IϕΦ + δIΦnI,ϕφ
= ∇

(
αϕ Φϕ

)
+ ΦInI,ϕφ (2.63)

Moreover, conditioning and volume-averaging of ∇•Φ becomes

Iϕ∇•Φ = ∇• IϕΦ − Φ•∇Iϕ = ∇•
(
αϕ Φϕ

)
+ δIΦ•nI,ϕφ

= ∇•
(
αϕ Φϕ

)
+ ΦI•nI,ϕφ , (2.64)

as the average and differentiation operator commute (equation 2.41).

From both equation 2.63 and equation 2.64 it is evident that the second term on
the r.h.s. depicts the averaged interfacial contribution as indicated by the use of
the interfacial delta function ∇Iϕ = −nI,ϕφ δI , while the first term represents
the bulk contribution.

According to Weller [6, 7], who follows Dopazo [21], a further analysis can be
done, when integrating each term in equation 2.63 and 2.64 over an infinitesimal
volume element δV . However, Weller does not define his volume element δV .

Therefore, consider the volume element δV = δVϕ + δVφ as illustrated in
figure 2.6 being composed of two infinitesimal volume elements adjacent to
the interface – δVϕ on the ϕ-side and δVφ on the φ-side. Then, integrating over
δVϕ, when examining Iϕ∇Φ and Iϕ∇•Φ , has no net effect on the first terms
in the equations 2.63 and 2.64, respectively, since the bulk (phase interior) con-
tributions can be regarded constant over δVϕ. However, the second terms can
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be transfered into surface integrals (as they contain the Dirac delta function),
and then read:

Φ∇Iϕ = − lim
δVϕ→0

1
δVϕ

∫
δVϕ(x, t)

ΦInI,ϕφ dV

= − lim
δVϕ→0

1
δVϕ

∫
SI(x, t)

ΦnI,ϕφ dS, (2.65)

where SI (x, t) is the equation for the interface. Note further that the two
volume-average operations have been interchanged since they commute. Simi-
larly, one obtains

Φ•∇Iϕ = − lim
δVϕ→0

1
δVϕ

∫
δVϕ(x, t)

ΦI•nI,ϕφ dV

= − lim
δVϕ→0

1
δVϕ

∫
SI(x, t)

Φ•nI,ϕφ dS. (2.66)

To omit this rather ponderous (yet illustrative) representation, it is useful to
introduce the definition of a conditioned interface-average ©Φϕ

:

©Φϕ
≡ 1
Σ

lim
δVϕ→0

1
δVϕ

∫
δVϕ

ΦIdV = 1
Σ

lim
δVϕ→0

1
δVϕ

∫
SI(x, t)

Φ dS, (2.67)

with Σ ≡ lim
δV→0

1
δV

∫
SI(x, t)

dS, (2.68)

where Σ denotes the interfacial area density – the interfacial surface area per
unit volume. Note that the interface average ©Φ as defined by Weller [6,7], being
the surface integral per unit volume divided by the interfacial area density,

©Φ ≡ 1
Σ

lim
δV→0

1
δV

∫
SI(x, t)

Φ (x, t) dS, (2.69)

can be transferred into ©Φϕ
– considering the limiting value of Φ after condi-

tioning and approaching the interface from the ϕ-side:

©Φϕ
= ¬ΦI,ϕ (2.70)

with ΦI,ϕ = δIΦϕ,

which is fully compatible with equation 2.47 for the bulk analog Φϕ. Note in
passing, that Hill [12] has enforcedly introduced the notation as set out on the
r.h.s. of equation 2.70, since he has interpreted the surface average of a quantity
(equation 2.69) as surface area weighted value of Φϕ at the interface. Hence,
his final form was identical to the r.h.s. of equation 2.70 – without introducing
the corresponding l.h.s. as necessary definition. For the sake of brevity and ease
of reading, both notations shall be used purposively henceforth.
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For interfacial quantities that are inherently defined on the interface it is
­ΦI,ϕφ

ϕ
= ­ΦI,ϕφ . (2.71)

Eventually this leads to the final forms of the equations 2.63 and 2.64:

Iϕ∇Φ = ∇
(
αϕ Φϕ

)
+ ¬ΦnI

ϕ
Σ and (2.72)

Iϕ∇•Φ = ∇•
(
αϕ Φϕ

)
+ ­Φ•nI

ϕ
Σ. (2.73)

Note in passing that of course the last terms again might be decomposed
into surface averages and surface fluctuation correlations denoted by the
superscript ]. Hence

¬ΦnI
ϕ

= ©Φϕ­nI,ϕφ +
­
Φ]n]I

ϕ

(2.74)
­Φ•nI

ϕ
= ©Φϕ

•
­nI,ϕφ +

³¹¹¹¹·¹¹¹¹µ
Φ]•n]I

ϕ

, (2.75)

where akin to the already introduced fluctuations with respect to the phasic
and phase-weighted averages, also the surface fluctuation products generally
needs to be modeled, if they are neither zero nor negligible.

temporal Conditioning and volume-averaging of ∂Φ
∂t leads to

Iϕ
∂Φ
∂t

= ∂IϕΦ
∂t

− Φ∂Iϕ
∂t

= ∂ IϕΦ
∂t

− Φ∂Iϕ
∂t

. (2.76)

Using the identity 2.34 yields

Iϕ
∂Φ
∂t

= ∂ IϕΦ
∂t

− Φ∂Iϕ
∂t

= ∂ IϕΦ
∂t

+ Φ (UI,ϕφ•∇Iϕ) , (2.77)

the last term of which again can be rewritten making use of the interfacial delta
function ∇Iϕ = −nI,ϕφ δI :

Φ (UI,ϕ•∇Iϕ) = − lim
δVϕ→0

1
δVϕ

∫
δVϕ(x, t)

Φ (UI,ϕφ•nI,ϕφ δI) dV

= − lim
δVϕ→0

1
δVϕ

∫
SI(x, t)

Φ (UI,ϕφ•nI,ϕφ ) dS

= −
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
Φ (UI,ϕφ•nI)

ϕ

Σ = ³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µΦnI•UI,ϕφ

ϕ
Σ. (2.78)

Finally, it is

Iϕ
∂Φ
∂t

= ∂αϕ Φϕ

∂t
− ³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µΦI,ϕnI,ϕφ •UI,ϕφΣ. (2.79)
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2.6. Conditional Volume-Averaged Bulk Conservation
Equations

In order to obtain the averaged arbitrary generic transport equation, its local instan-
taneous counter-part (2.24) is conditional volume-averaged, which reads

Iϕ
∂ρΦ
∂t

+ Iϕ∇• (ρΦU) − Iϕ∇• (ΓΦ,d∇Φ) − IϕSΦ = 0. (2.80)

Now recalling equations 2.46, 2.72, 2.73 and 2.79 yields, when neglecting mass
transfer:

∂αϕ ρΦ
ϕ

∂t
+∇•

(
αϕ ρΦUϕ

)
−∇•

(
αϕ ΓΦ,d∇Φϕ

)
= IϕSΦ +

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(ΓΦ,d∇Φ) •nI

ϕ

Σ.

(2.81)

By replacing the generic transport quantity as well as corresponding coefficients and
source terms according to table 2.1 we arrive at the

• conditional volume-averaged continuity equation:

∂αϕ ρ
ϕ

∂t
+∇•

(
αϕ ρU

ϕ
)

= 0. (2.82)

By use of an appropriate (density-weighted) decomposition according to equa-
tion 2.55, this results in:

∂αϕ ρ
ϕ

∂t
+∇•

(
αϕ ρ

ϕŨϕ
)

= 0. (2.83)

Considering incompressible flows with constant densities ρϕ and ρφ in both
phases ϕ and φ, e.g., it is Φ̃ϕ != Φϕ, since Iϕρ = ρϕ = const within phase ϕ.
Then, the conditional volume-averaged continuity equation reads:

∂αϕ
∂t

+∇•
(
αϕ Uϕ

)
= 0. (2.84)

• conditional volume-averaged momentum equation:

∂αϕ ρU
ϕ

∂t
+∇•

(
αϕ ρUUϕ

)
−∇•

(
αϕ µ∇Uϕ

)
=−∇ (αϕ pϕ) + αϕ ρ

ϕg

−«pnI ϕΣ + ³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ(µ∇U) •nI
ϕ
Σ.
(2.85)
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The non-linear second term on the l.h.s. of equation 2.85, needs appropriate
(density-weighted) decomposition according to equation 2.55:

ρUUϕ = ρϕ
˜̃UϕŨϕ

ϕ

+ 2 ρϕ ˜̃UϕU′′ϕ
ϕ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

+ ρϕ Ũ′′ϕU′′ϕ
ϕ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≡R̃

ϕ

= ρϕŨϕŨϕ + ρϕR̃ϕ
, (2.86)

with R̃ϕ representing the density-weighted Reynolds stress tensor, by means of
which velocity fluctuations, which may be introduced by interface motion and
turbulence, are accounted for.

Eventually, by use of equation 2.13 and 2.14, the conditional volume-averaged
momentum equation becomes:

∂αϕ ρ
ϕŨϕ

∂t
+∇•

(
αϕ ρ

ϕŨϕŨϕ
)

+∇•
(
αϕ ρ

ϕR̃ϕ
)

=−∇ (αϕ pϕ)−∇• (αϕ τϕ) + αϕ ρ
ϕg + Mϕ, (2.87)

where the last term in the r.h.s. has been summarized as:

Mϕ ≡ −
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ(pI + τ ) •nI

ϕ
Σ = (pI + τ )I,ϕ •∇Iϕ

= −¬σ•nIϕΣ = σI,ϕ•∇Iϕ , (2.88)

denoting the interfacial momentum transfer term.

For incompressible two-phase flows, i.e., Φ̃ϕ != Φϕ, the conditional volume-
averaged momentum equation becomes

∂αϕ Uϕ

∂t
+∇•

(
αϕ Uϕ Uϕ

)
+∇•

(
αϕ Rϕ

)
=− ∇ (αϕ pϕ)

ρϕ
− ∇• (αϕ τϕ)

ρϕ
+ αϕg + Mϕ

ρϕ
. (2.89)

• conditional volume-averaged chemical species conservation equation:
∂αϕ ρxi

ϕ

∂t
+∇•

(
αϕ ρxiU

ϕ
)
−∇•

(
αϕ ρDi∇xi

ϕ
)
− αϕ R̂i

ϕ
=
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(ρDi∇xi) •nI

ϕ

Σ.

(2.90)

By substituting ci = xi · c = xi · ρ/M – where c, ρ and M denote the mean
mixture concentration, density and molar mass, respectively – it follows for a
diluted species i (c = const, ρ = const and M = const, even for varying ci)
from equation 2.90:

∂αϕ ci
ϕ

∂t
+∇•

(
αϕ ciU

ϕ
)
−∇•αϕDi∇ci

ϕ − αϕRi
ϕ =

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(Di∇ci) •nI

ϕ

Σ,

(2.91)
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which becomes

∂αϕ ci
ϕ

∂t
+∇•

(
αϕ ciU

ϕ
)
−∇•αϕDi

ϕ∇ ciϕ − αϕRi
ϕ =

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(Di∇ci) •nI

ϕ

Σ,

(2.92)

given that D′ϕi
!= 0.

2.7. Conditional Volume-Averaged Interfacial Jump
Conditions

From equation 2.25, representing the local-instantaneous jump condition for a generic
transport quantity Φ, we arrive at the corresponding volume-averaged interface
balance by conditioning and subsequently volume-averaging. Conditioning is ac-
complished by multiplication with δI (x− xI , t), which represents the interface delta
function. Taking into account the symmetry, nI,ϕφ = −nI,φϕ , and neglecting mass
transfer, it is:

‖ (ΓΦ,d∇Φ) •nI‖δI = −SΦ,IδI

⇔ (ΓΦ,d∇Φ)I,ϕ •∇Iϕ + (ΓΦ,d∇Φ)I,φ •∇Iφ = −SΦ,IδI

⇔
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(ΓΦ,d∇Φ) •nI,ϕφ

ϕ

Σ +
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(ΓΦ,d∇Φ) •nI,φϕ

φ

Σ = SΦ,IδI . (2.93)

Again replacing the generic transport quantity Φ and corresponding coefficients and
source terms, one can state the following for the

• conditional volume-averaged interfacial mass jump condition:
In absence of mass transfer (e.g., due to phase change) the generic jump
condition as provided in equation 2.93 degenerates to the trivial identity 0 = 0,
indicating that no additional condition has to be taken into account.

• conditional volume-averaged interfacial momentum jump condition:

(µ∇U)I,ϕ •∇Iϕ + (µ∇U)I,φ •∇Iφ
= −pI,ϕnI,ϕφ δI − pI,φnI,φϕ δI − σκI,ϕφ nI,ϕφ δI
= pI,ϕ∇Iϕ + pI,φ∇Iφ + σ κI,ϕφ∇Iϕ (2.94)

⇔ − ³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ(pI + τ ) •nI,ϕφ
ϕ
Σ − ³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ(pI + τ ) •nI,φϕ

φ
Σ = σ ³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µκI,ϕφnI,ϕφ

ϕ
Σ

− ³¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹µσ•nI,ϕφ
ϕ
Σ − ³¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹µσ•nI,φϕ

φ
Σ = σ ³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µκI,ϕφnI,ϕφ

ϕ
Σ. (2.95)

By use of equation 2.13 and 2.14 and taking into account the definition of the
interfacial momentum transfer term Mϕ (and for Mφ) according to equation
2.88, we arrive at the shorthand notation for the conditional volume-averaged
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momentum jump condition. In the absence of mass transfer and neglecting any
variations of the surface tension σ along the interface (e.g., no Marangoni effect
∇I (σ) = 0), it is:

Mϕ + Mφ = Mσ, (2.96)

where Mσ on the r.h.s. of equation 2.96 denotes the averaged interfacial mo-
mentum source due to surface tension:

Mσ ≡ −σ κI,ϕφ∇Iϕ = σ ³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µκI,ϕφ nI,ϕφΣ. (2.97)

• conditional volume-averaged interfacial species jump conditions

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(ρDi∇xi) •nI,ϕφ

ϕ

Σ +
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(ρDi∇xi) •nI,φϕ

φ

Σ = 0. (2.98)

Then, from equation 2.98 for the corresponding jump condition, it follows:

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(Di∇ci) •nI,ϕφ

ϕ

Σ +
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(Di∇ci) •nI,φϕ

φ

Σ = 0. (2.99)

2.8. Volume-averaged Interface Transport Equation

In order to arrive at the volume-averaged interface transport equation, its local-
instantaneous counter-part as set out in equation 2.34 is volume-averaged:

∂Iϕ
∂t

+ UI,ϕ•∇Iϕ = 0 ⇔ ∂αϕ
∂t
− ³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µUI,ϕ•nI,ϕφΣ = 0, (2.100)

where the substitution UI,ϕφ = UI,ϕ has been made. This is valid in the absence of
mass transfer due to condensation or evaporation – as it is assumed throughout this
study. Note in passing that this result is also achieved by simply substituting Φ = 1
into equation 2.79.

Some progress towards a more exploitable form of the second term on the l.h.s.
of equation 2.100 is achieved by decomposing UI,ϕ into an interfacial average and
interfacial fluctuating velocity as

UI,ϕ = ©Uϕ
+ U]

I,ϕ. (2.101)

Then, substituting of equation 2.101 in 2.100 results in

∂αϕ
∂t
−
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ©Uϕ

•nI,ϕφΣ −
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
U]
I,ϕ•nI,ϕφΣ = 0, (2.102)

⇔ ∂αϕ
∂t
− ©Uϕ

•
­nI,ϕφ Σ −

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
U]
I,ϕ•nI,ϕφΣ = 0. (2.103)
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By use of equation 2.72 (substituting Φ = 1) it follows

∂αϕ
∂t

+ ©Uϕ
•∇αϕ −

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
U]
I,ϕ•nI,ϕφΣ = 0, (2.104)

which represents the final form of the averaged interface transport equation, with two
interfacial averaged terms allowing for a further inspection on a physical basis.
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3
Closure Framework

Reality is that which, when you
stop believing in it, doesn’t go
away.
Philip K. Dick

Abstract

This chapter considers modeling approaches for closure. For this purpose, different two-
phase flow types in varying scale regimes are examined in order to obtain a consistent
multi-scale model framework. This model framework shall cover both well-established
Eulerian CMFD methods for resolved (microscale) and unresolved (macroscale) interfa-
cial scale regimes. Moreover, it encompasses a more general novel CMFD approach for
two-phase flow situations being partially resolved (mesoscale) – intrinsically including
the above cases as its limits of applicability.
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The equations 2.84, 2.89 and 2.104 constitute a two-phase flow model, which is
generally valid, thus applicable for quite different flow types that might occur in a
two-phase system. However, in this form the two-phase flow model is not solvable.
It is said to be unclosed, since there are terms present within its governing equations
that need further modeling in order to express them as functions of conditional
volume-averaged quantities – only these are accessible within a solution procedure.
This modeling process is called closure. The model equations accomplishing the
closure in terms of averaged quantities are called constitutive or (straightforward)
closure models.

Traditionally, the unclosed terms in the two-phase flow model equations might be
categorized1 into three groups, that are

• phase-interaction terms: interfacial momenta transfer terms Mϕ and Mφ along
with the interfacial momentum source term due to surface tension Mσ

• self-interaction terms: averaged shear stress terms τϕ and τφ

• turbulence terms: averaged Reynolds stress tensors Rϕ and Rφ.

However, the modeling of the latter group of terms, i.e., turbulence modeling of
two- and multiphase systems, is still an open research area on its own, that requires
detailed knowledge of the interaction between turbulent and morphological interfacial
structures. The interested reader might be referred to the work of Toutant et al.
[22–25], who examine the interplay of under-resolved discontinuous interfaces and
turbulence structures, employing spatial filtering as central tool. Thus, their work
appears to be fully compatible with both the LES concept and this study. Hence,
the present thesis will further focus on the first two groups concerning interfacial
momenta transfer and shear stress modeling.

Eventually, all of these (at this stage) unclosed terms will differ when considering
different flow types, e.g., dispersed and segregated flows, respectively. It seems
reasonable that the concrete form of a closure relation might vary dependent upon
the length scale down to which the two-phase flow under consideration is resolved,
which finally is a matter of the size of the averaging volume chosen. Accordingly, we
might refer to the resulting two-phase flow models as interfacial scale averaging or
interfacial scale resolving (compare to page 3 in the introductory chapter 1). The
latter group can be split up further into fully and partially resolving interfacial scales
of a two-phase flow at hand – as will be set out below.

1 However, as will be seen, this categorization looses somewhat ground, since as for the generic
transport equation for a two-phase flow, there will be coupling terms accounting for the presence
of the respective second phase. In particular, the wording self-interaction is no longer clear for
this reason. However, for convenience we might stick to that common nomenclature for now,
as this at least points to the physical origin the unclosed terms stem from – the corresponding
mathematical model for single-phase flows.
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In the remainder of this section closure relations for different two-phase flow types
shall be examined. Main scope is put upon the ’information loss’ due to averaging
that occurs beyond the averaging scale. It is attempted to provide reasonable
avenues towards a physical meaningful interpretation of unclosed terms within this
non-resolved scale range, in turn enabling to formulate closure relations on a sound
basis.

Finally, for the sake of completeness, comments are made on commonly used and
widely accepted simplifications of the previously derived general two-phase model.
However, as this does not lead to a general model framework for different two-
phase flow types (thus not being the objective of this work), solely the underlying
assumptions, the resulting governing equations and the corresponding specific field
of applicability shall be briefly highlighted.

3.1. Closure Strategy

In order to develop a sound and consistent closure it is first advisable to have a
closer look on the ’conceptual picture’ that can be drawn from the applied averaging
procedure and its physical interpretation, which is examined in the forthcoming
sections. For this purpose it is of use to distinguish between two specific flow types,
namely

1.) dispersed flows (figure 3.1), e.g., bubbly or droplet flows, and
2.) segregated flows (figure 3.2), e.g., stratified or wavy free-surface flows,

as limiting cases of a rather general two-phase flow scenario of mixed type, that is
bubbles and droplets exist in the liquid and the gaseous phase, respectively, as this
might be achieved by superposition of both cases. Consequently, for the purpose of
a consistent and general closure, the use of a scale similarity hypothesis is proposed
– analogous to LES modeling for single-phase flows:

The smallest resolved scales of a two-phase flow are assumed to exhibit
similar characteristics as the largest non-resolved ones.

Following this hypothesis, it is reasonable and advantageous to consider dispersed
flows within an interfacial scale averaging closure framework and segregated flows
within an interfacial resolving closure framework. However, the latter is allowed
to only partially resolve interfacial details. Doing so, ensures that both conceptual
frameworks are fully compatible with each other, that is the characteristic length
scales of both underlying flow types are inherently aligned. This allows the utilization
of one uniform closure framework that holds the influence of different flow types in
its closure terms and provides a decent avenue to model mixed flow types as well.
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analysis

model
abstraction

volume

averaging

1.

2.

3.

dispersed flow type

Figure 3.1: Principle of model closure – Dispersed flow type.
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Figure 3.2: Principle of model closure – Segregated flow type.
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3. Closure Framework

ad 1.) interfacial scale averaging closure framework – figure 3.1
Closure models for the first two phase-flow type (dispersed flows) are well-
established and widely used. Modeling is commonly accomplished employing
two-fluid model frameworks, that are based on the concept of interpenetrating
continua [26]: The actual interface morphology and motion is not explicitly
resolved, i.e., the averaging volume is chosen much larger than the characteristic
length scale of the dispersed phase (e.g., the equivalent diameter of the (fluid)
particle). As a consequence, all interactions between the phases have to be
modeled appropriately within the averaging framework – in an average sense.

ad 2.) interfacial scale resolving closure framework – figure 3.2
A closure for the second two-phase flow type under consideration (segregated
flow) needs to be accomplished consistently, meaning also in the same manner.
As a pivotal aspect of closure, a conceptual framework has to be formulated that
is compatible and in the same spirit as the concept of interpenetrating continua
for dispersed flow types. Such a conceptual framework has been developed
through the course of this study and will henceforth be entitled concept of
partially penetrating continua in the interfacial transition region: The interfacial
morphology is partially resolved, i.e., the averaging volume is chosen sufficiently
in its size to capture the main (mean) dynamics of the interfacial flow, whereas
non-resolved interfacial morphologies and phase interactions again must be
accounted for in the underlying averaging framework by appropriate (physical
meaningful) closure models. As a consequence, the interface is represented as an
interfacial transition region of certain characteristic width, which is determined
by the averaging length scale.

Note that both concepts are based upon the same ’physical picture’ directly evolving
from the conditional volume-averaging procedure employed, that is each phase is
treated separately and is assumed to coexist within the averaging volumes, possessing
characteristic properties and an own velocity and pressure field.

3.2. Conceptual Approaches

3.2.1. Concept of Partially Penetrating Continua

Figure 3.2 schematically illustrates the ’conceptual picture’ arising from the condi-
tional volume-averaging procedure if a segregated flow is present within the averaging
volume. This enables to decompose the morphological structure of the interface
into a resolved mean and a non-resolved local one. Consequently, this separation
into resolved mesoscale and non-resolved microscale allows for the same modeling
approach that already has been established and is well-known within the concept
of interpenetrating continua for dispersed two-phase flows – that is to model all
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3.2. Conceptual Approaches

non-resolved scales employing closure relations in the underlying averaging frame-
work while resolving the other scales by means of numerically solving for averaged
conservation equations.

Hence, to be consistent within this framework and thus through the course of the
forthcoming derivations of closure relations, it is rational to formulate models for
both the interfacial averaged and the interfacial fluctuation parts of a conditioned
generic flow quantity at the interface

ΦI,ϕ = ©Φϕ
+ Φ]

I,ϕ, (3.1)

as functions of averaged (thus accessible) quantities, being separated into contri-
butions stemming from the non-resolved microscale and the resolved mesoscale,
respectively.

However, for this purpose a model representation of the interface morphology is
needed. This can be illustrated along three quantities representing pivotal features
of two-phase flows, the interfacial averaged curvature ªκI and unit normal vector ªnI ,
and the interfacial averaged velocity ©Uϕ

– characterizing the interface morphology
and its transport.

interfacial morphology The local interface morphology is entirely characterized by
the local curvature κI,ϕφ , and the local unit vector normal to the microscale
interface, nI,ϕφ . By use of the phase indicator function Iϕ, it is

κI,ϕφ = ∇•nI,ϕφ and nI,ϕφ = ∇Iϕ
|∇Iϕ|

, (3.2)

henceforth shortly denoted as κI and nI instead κI,ϕφ and nI,ϕφ , respectively.
However, the evaluation of the corresponding interfacial averaged counter-parts,

ªκI ≡ κI∇Iϕ
|∇Iϕ|

and ªnI ≡ nI∇Iϕ
|∇Iϕ|

, (3.3)

requires detailed knowledge of the microscopic interfacial morphology, which is
a priori unknown – figure 3.3. The frontier might be pushed somewhat further
by taking advantage of equation 2.72 and substituting Φ = 1, which results inªnIΣ = −∇αϕ. Thus, it is:

ªnI = −∇αϕ
Σ

and ªκI = ¬∇•nI = ∇•ªnI = −∇•
(∇αϕ

Σ

)
. (3.4)

It has to be emphasized that Σ herein comprises two contributions, that are
the averaged (mesoscale, resolved) curvatures and the fluctuating (microscale,
non-resolved) curvature, both of which are fully governing the entire interfacial
area density.
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3. Closure Framework

Figure 3.3: Closure model for the interfacial morphology.

To make progress, a closure model for the interfacial area density Σ is needed
– see corollary note 3.1.

Corollary Note 3.1
From equation 2.72 a model for the interfacial area density Σ might be
derived:

|ªnI |Σ = |∇αϕ|
|
¬nI |≈1⇐⇒ Σ ≡ |∇Iϕ| ≈ |∇ Iϕ | = |∇αϕ|. (3.5)

As can be seen, this model is justified under one specific assumption that
is |­nI,ϕφ | ≈ 1 stating that the interfacial area density is allowed to vary
only across the interfacial transition region normal to ­nI,ϕφ – but not along
contours of constant αϕ. This means that Σ is assumed to be dominated
by contributions from the non-resolved interfacial morphology within the
interfacial transition region, while macroscopic contributions (e.g., from the
resolved mean curvature) play a much lesser role.
Note that assuming such a local instantaneous isotropic interfacial mor-
phology fully complies with the requirement of phase invariance, since
∇αϕ = −∇αφ.

For the interfacial averaged interface morphology it follows:

ªnI = − ∇αϕ
|∇αϕ|

and ªκI = −∇•
(
∇αϕ
|∇αϕ|

)
, (3.6)
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3.2. Conceptual Approaches

which enables to a further analysis of ªκI resulting in the desired separation of
non-resolved microscopic and resolved macroscopic contributions:

ªκI = −∇•
(
∇αϕ
|∇αϕ|

)
= − 1
|∇αϕ|

[
∇•∇αϕ +∇

(
1

|∇αϕ|

)
•∇αϕ

]

= − 1
|∇αϕ|

[
∇2αϕ −

∇αϕ
|∇αϕ|

•∇|∇αϕ|

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=«nI •∇Σ

]
. (3.7)

Since Σ only varies across the interfacial transition region normal to ªnI , it is

ªκI = −∇
2αϕ
|∇αϕ|

+ dΣ

dαϕ
, (3.8)

with the second contribution consequently being identified as contribution
from the microscopic non-resolved curvature to ªκI – stemming from local
fluctuations inside the interfacial transition region.

interface transport The decomposition of the instantaneous velocity at the interface
into an interfacial averaged velocity and local interfacial velocity fluctuation
yields

UI,ϕ = ©Uϕ
+ U]

I,ϕ. (3.9)

Stating that the non-resolved velocity profile shall be continuous across the
interface – which essentially is an interfacial no-slip condition – a closure model
for the interfacial averaged velocity ©Uϕ

can be deduced (corollary note 3.2):

Corollary Note 3.2
Illustratively, the interfacial situation is depicted in figure 3.4 for a shear
flow scenario. From elementary geometry (intercept theorem) it can be
easily seen, that for a simple case where µϕ = µφ:

©Uϕ
− Uφ

Uϕ − ©Uϕ = Iφ
Iϕ

⇔ ©Uϕ
= Iφ Uϕ + Iϕ Uφ

, (3.10)

and with a correction for the general case where µϕ 6= µφ:

µφ

µϕ

©Uϕ
− Uφ

Uϕ − ©Uϕ = Iφ
Iϕ

⇔ ©Uϕ
= Iφ µ

ϕ Uϕ + Iϕ µ
φ Uφ

Iϕ µφ + Iφ µϕ
. (3.11)
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3. Closure Framework

Figure 3.4: Closure model for the interfacial averaged velocity.

Consequently, equation 3.11 results in the final closure relation for ©Uϕ
(for

Iϕ = Iφ
!= 1/2 at the interface):

©Uϕ
= ¬UI,ϕ = µϕ Uϕ + µφ Uφ

µϕ + µφ
. (3.12)

Note that the phase symmetry is still preserved, e.g., ϕ and φ are inter-
changeable. Furthermore, the closure according to equation 3.12 is generally
applicable, i.e., it can be assumed valid for different viscosity ratios µφ/ µϕ.
Moreover, considering limiting cases, this closure yields physically reasonable
results. If we choose phase ϕ as liquid phase and φ as gaseous phase, that is
in case of a free-surface flow flow where µφ � µϕ, it follows ©Uϕ

= Uϕ, which
clearly is a physically plausible outcome.

For comprehension, it shall be emphasized that the concept of partially penetrating
continua does not rely upon fully resolving both the interfacial morphology and the
interfacial boundary layer – as for instance DNS methods do requiring a sufficiently
small averaging volume. In fact the challenge now rests in the necessity to find
appropriate (physically sound) closure models in order to account for non-resolved
interfacial scales.
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3.2. Conceptual Approaches

Moreover, in contrast to conventional diffuse interface models, this approach is fluid
dynamically motivated, rather than thermodynamically: while diffuse interface mod-
els consider the fluctuating scale on a molecular level – considering the interface
as region of coexisting molecules pertaining to both phases – the concept of par-
tially penetrating continua considers the fluctuating scale being shifted by several
orders of magnitude to the scale of wavy structures; thus it closes the gab between
sharp interface models (relying on the full resolution of interfacial morphologies and
boundary layers) and the conventional two-fluid model based upon the concept of
interpenetrating continua for dispersed flows (resolving no interfacial scales at all).
In consequence, this means a paradigm shift, similar to LES (from DNS or RANS)
for turbulence modeling.

3.2.2. Concept of Interpenetrating Continua

Figure 3.1 depicts the ’conceptual picture’ arising from the conditional volume-
averaging procedure imposed on a dispersed flow type being present in the underlying
averaging volume. The dispersed two-phase flow is considered as two constituent
pseudo-continuum, with each phase being treated separatly. As already indicated,
the interfacial morphology is not resolved at all. Hence, generally one has to act
on specific assumptions regarding the flow morphology (e.g., spherical or ellipsoidal
particles, drops or bubbles) when modeling phase interactions via closure relations
within the averaging framework. As a consequence of modeling, interfacial exchange
processes have to be accounted for explicitly. This is usually done for the most general
case, that is for a fluid particle of arbitrary shape moving in a potentially non-uniform
flow field. The fluid dynamic forces, generally acting upon a fluid particle in such a
flow type, can be categorized into drag and non-drag forces as

Fp = Fd¯
drag-force

+ Fl + Fvm + Ftd´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
non-drag forces

. (3.13)

The fluid dynamic origin of these forces is set out in table 3.1 and illustrated in
figure 3.5 for bubbly flows. Their modeling will be examined in considerable detail in
the closure section below and depends on a multitude of parameters and factors,
mostly being grouped in dimensionless numbers, as it is established practice in
engineering: the bubble Reynolds number2 Reb ≡ db|Ur|/νl representing the ratio of
inertia to viscous forces, the Eötvos number Eo ≡ g(ρl − ρb)d2

b/σ representing the
ratio of buoyancy to surface tension forces and Mo ≡ g(ρl − ρb)η4

l /ρ
2
l σ

3, the Morton
number by means of which the ratio of viscous to surface tension forces is taken
into account. Note that this is not a complete set fully describing bubbly flows.
E.g., dimension analysis reveals two more dimensionless numbers, the density ratio
Πρ ≡ ρl/ρb and viscosity ratio Πν ≡ νl/νb. Also the system purity plays a central
2 Note that the disperse bubble phase has been denoted as ϕ = b, whereas φ = l represents the

continuous liquid phase.
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(a) drag force. (b) virtual mass force.

(c) lateral lift force. (d) turbulent disper-
sion force.

Figure 3.5: Interfacial forces in bubbly flows.
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3.3. Momentum Transfer Closure

Table 3.1: Forces exerted on a fluid particle.

Fd The drag force acts on particles when they move with a
relative (slip) velocity Ur with respect to an underlying
flow. Consequently, a fluid particle is exerted to a resisting
force which is opposed to the direction of its movement.

Fl The lateral lift force is a shear-induced force on the fluid
particle due to a non-uniform incident flow of the continuous
phase. For bubbly flows this is the most important non-drag
force, since the lateral lift force acts perpendicular to the
drag force and as such makes a pivotal contribution in cap-
turing the evolution of typical bubbly flow characteristics.

Fvm The virtual mass force accounts for the effect that accelerat-
ing particles always entrain a certain amount of surrounding
fluid.

Ftd The turbulent dispersion force accounts for turbulent fluc-
tuations in the flow field acting with the fluid particles.
These turbulent eddies in the continuous phase usually tend
to scatter a swarm of dispersed phase particles.

role. Furthermore, other dimensionless groups might be used in a complementary
manner, i.e., We = Re2√Mo/Eo or Fr =

√
We/Eo. Additionally, there are

parameters explicitly taking into account particular flow properties and conditions
that are imposed on bubbles: E.g., the vorticity of the continuous liquid phase
velocity, ∇× Uφ, its density ρφ and effective viscosity νeff,φ (including liquid phase
and bubble-induced turbulence).

3.3. Momentum Transfer Closure

3.3.1. Phase-interaction Terms – Mϕ and Mφ

The first phase-interaction term to be analyzed for closure is the interfacial mo-
mentum transfer term Mϕ as defined in equation 2.88. In effect, the momentum
equations 2.89 for phase ϕ and φ are coupled through the conditional volume-averaged
momentum jump condition set out in equation 2.96. Hence, a careful analysis of
the physical nature of this coupling is crucial for a reasonable closure and plausible
solution. As can be seen from equation 2.88, the integral of the instantaneous pressure
and viscous stress distribution needs to be expressed as constitutive equation. In
order to examine this integral it is useful to decompose the instantaneous pressure
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3. Closure Framework

in a static contribution (mean interfacial pressure) and a dynamic one (fluctuating
pressure). This pressure split thus reads

pI,ϕ = ©p ϕ + p]I,ϕ, (3.14)

and results for the interfacial momentum transfer term in:

Mϕ = ©p ϕI•∇Iϕ + (p]I + τ )I,ϕ •∇Iϕ = ©p ϕI•∇Iϕ −
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ(
p]I + τ

)
•nI

ϕ

Σ

= ©p ϕ∇αϕ + Mϕ,h, (3.15)

since

©p ϕ∇Iϕ = −
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
δI
©p ϕnI

ϕ

Σ = −
¬©p ϕ

ϕªnI ϕΣ = ©p ϕ∇αϕ. (3.16)

The last term on the r.h.s. of equation 3.15 is defined as

Mϕ,h ≡ (p]I + τ )I,ϕ •∇Iϕ = −
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ(
p]I + τ

)
•nI

ϕ

Σ. (3.17)

Illustratively, the first term on the r.h.s. of equation 3.15 represents a net force
contribution from the interfacial averaged pressure ©p ϕ in case there is a gradient in
the volumetric phase fraction of phase ϕ, ∇αϕ, whereas the second term holds the
unbalanced interfacial pressure and shear (viscous) stress contribution ³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ(p]I+τ)•nI

ϕ
Σ.

For both dispersed and segregated two-phase flows the closure model for Mϕ,h

is a crucial one, since it couples both momenta explicitly. With some evidence,
constitutive models for both contributions are expected to differ significantly for
different flow types. Hence, these contributions are to be analyzed for both dispersed
and segregated flow type.

Mean interfacial pressure contribution

In order to examine the interfacial averaged pressure contribution to Mϕ and to for-
mulate an appropriate closure, it is important to note that there are two constituents,
that generally cause the ’mean interfacial’ pressure ©p ϕ to be different from the ’mean
bulk’ pressure pϕ:

• phase slip,
i.e., relative motion between the phases, reducing the mean pressure in vicinity
to the interface (Bernoulli effect). For closure an expression would be of use,
that clearly relates the pressure distribution over the interface to the bulk mean
pressure. Subsequent averaging over the interface would result in a closure
relation.

• surface tension,
manifesting in an interfacial force balance with a force contribution due to
interfacial averaged pressure (Young-Laplace effect).
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3.3. Momentum Transfer Closure

For the first constituent (that is due to phase slip) it is rational to examine the con-
ditional volume-averaged interfacial momentum jump condition while disregarding
surface tension. From equations 2.96 and 3.15, it follows:

©p ϕ∇αϕ + Mϕ,h + ©p φ∇αφ + Mφ,h = 0. (3.18)

In order to examine the second constituent (that is due to surface tension) the con-
ditional volume-averaged interfacial momentum jump condition has to be considered
for a case without flow:

©p ϕ∇αϕ + ©p φ∇αφ = Mσ. (3.19)

Moreover, this needs to be examined for both dispersed and segregated flows.

Dispersed Flows

• contribution from phase slip
According to Stuhmiller [27] the interfacial averaged pressure can be related to
the phasic averaged one by

©p ϕ = pϕ − 0.37 ρφCd|U
φ − Uϕ|2, (3.20)

where ϕ represents the dispersed phase while φ was taken to denote the con-
tinuous one. This closure model is based upon an approximate expression for
the pressure distribution over a bubble’s surface underlying an inviscid flow
solution. However, it shall be assumed valid for bubble Reynolds numbers
outside the inviscid limit henceforth [12]. The factor Cd in the above expression
denotes the drag coefficient, which needs to be modeled as well, as set out in
the following (page 77).

• contribution from surface tension
Since the size of the averaging volume has been chosen significantly larger than
the characteristic length scale of the dispersed phase – e.g., the equivalent
diameter of the fluid particles – it is justified to neglect fluid particles that
intersect the control volume’s surface, which in turn means that the replacement

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ(. . .) nI,ϕφΣ ≈
1
V

∑
Np

∮
Sp

(. . .) nI,ϕφ dS (3.21)

is approximately valid. Hence, it follows from equation 2.97:

Mσ = σ¬κInIΣ ≈ σ

V

∑
Np

∮
Sp
κInIdS = 0. (3.22)
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Subsequently equation 3.19 results into(©p ϕ − ©p φ)∇αϕ = 0, (3.23)

stating that there is no net force that has to be explicitly taken into account.
Claiming phase-symmetry and with Mϕ,σ ≡ ©p ϕ∇αϕ (and Mφ,σ ≡ ©p φ∇αφ)
it follows:

Mϕ,σ = 0 and Mφ,σ = 0. (3.24)

Segregated Flows

• contribution from phase slip
For segregated flows it is suggested to relate the ’interfacial mean’ and the ’bulk
mean’ pressure as

©p ϕ = pϕ − αϕαφ ρ
ϕ ρφ

αϕ ρφ + αφ ρϕ
|Uφ − Uϕ|2 (3.25)

simply following Bestion [28], who introduced this term in the Cathare Code
without physical argumentation, however resulting in a form expected by Drew
and Lahey [1]. It is interesting to note that this expression vanishes for stagnant
fluids, while at the same time preserving hyperbolicity at least when there exists
a phase slip [29].

• contribution from surface tension
Since closure relations obviously are related to an interfacial force density due
to surface tension, that is assumed to be dominated by non-resolved (micro-
scopic/local) curvature, i.e., the inner morphological structure of the interfacial
transition region, it is advisable to revisit the underlying assumption of an
isotropic interfacial topology: According to equation 3.8 the interfacial averaged
curvature ªκI can be decomposed into a resolved mesoscopic contribution and a
dominant non-resolved microscopic contribution dΣ/dαϕ, where the interfacial
area density Σ is only allowed to vary across the interfacial transition region,
that is in the direction of ªnI – perpendicular to contours of constant αϕ.

As set out for equation 3.19 closure models are needed for the terms Mϕ,σ and
Mφ,σ as well as for Mσ. Considering the adoption of this assumption in the
context of interfacial surface tension modeling it is proposed that

Mϕ,σ = αϕ · 4αϕαφMσ and Mφ,σ = αφ · 4αϕαφMσ, (3.26)

where 4αϕαφ represents a regularization term. This is clearly stating that the
essential contribution of the interfacial force density due to surface tension to
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the momentum equation of a particular phase is to be localized in a part of
the interfacial transition region that does feature the inner curvature: on the
adjacent sites of the interface (from the respective "phases’ view point").

It is left to formulate a closure relation for Mσ being defined as σ¬κInIΣ
according to equation 2.97: This might be decomposed in the usual way into
an interfacial average and an interfacial fluctuating contribution:

Mσ = σ¬κInIΣ = σ

(ªκI ªnI +
¬
κ]In

]
I

)
Σ. (3.27)

With equation equation 2.72 (substituting Φ = 1) and 3.8 it can be seen that
underlying an isotropic interfacial morphology equation 3.27 can be rewritten
as

⇒ Mσ = −σ
(
−∇

2αϕ
|∇αϕ|

+ dΣ

dαϕ

)
∇αϕ + σ

¬
κ]In

]
IΣ. (3.28)

As already has been set out for equation 3.8, dΣ/dαϕ states the contribution of
the microscopic non-resolved curvature stemming from local fluctuations inside
the interfacial transition region. Thus, it seems rational to assume the same
form for

¬
κ]In

]
IΣ. Consequently, we propose the model

¬
κ]In

]
IΣ ∼

dΣ

dαϕ
∇αϕ. (3.29)

In order to arrive at an exploitable form of relation 3.29 an algebraic expression
for the interfacial area density Σ is needed. Moreover, the relation must be
transferred into an equation. For this purpose, it is suggested to adopt the
following phase-invariant formulation for Σ:

Σ = 4αϕαφΣ0, (3.30)

where Σ0 depends on the presumed non-resolved interfacial morphology and
shall (for now) be assumed to be constant. Using the equations 3.6 and
incorporating the proportionality factor (q.v. relation 3.29) into Σ0 (equation
3.30), we can rewrite equation 3.27:

Mσ =σªκI ªnIΣ + σ
dΣ

dαϕ
∇αϕ

≈σ
(
∇•
(
∇αϕ
|∇αϕ|

)
+ 4Σ0 (1− 2αϕ)

)
∇αϕ. (3.31)

Note that the model assumption according to equation 3.29 is rational, since
dΣ/dαϕ is identified to provide the contribution from the microscopic non-
resolved curvature that remains even for a macroscopically flat interfacial
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transition region and ¬κ]In]I Σ can be interpreted as the mean effect of this
microscopic non-resolved curvature. Thus, finally it is:

Mϕ,σ ≈ αϕ · 4αϕαφ σ
(
∇•
(
∇αϕ
|∇αϕ|

)
+ 4Σ0 (1− 2αϕ)

)
∇αϕ and

Mφ,σ ≈ αφ · 4αϕαφ σ
(
∇•
(
∇αϕ
|∇αϕ|

)
+ 4Σ0 (1− 2αϕ)

)
∇αϕ. (3.32)

Taking advantage of the product rule, the term ∇ (αϕ pϕ) in the conditional volume-
averaged momentum equation 2.89 might be expanded towards αϕ∇ pϕ + pϕ∇αϕ.
This enables to isolate a net interfacial pressure force density Mϕ,p ≡

(©p ϕ − pϕ
)
∇αϕ,

accounting for the pressure difference ©p ϕ − pϕ due to phase slip. It follows for
dispersed flow from equation 3.20

Mϕ,p = −0.37 ρφCd|U
φ − Uϕ|2 ∇αϕ, (3.33)

and for segregated flow from equation 3.25

Mϕ,p = − αϕαφ ρ
ϕ ρφ

αϕ ρφ + αφ ρϕ
|Uφ − Uϕ|2 ∇αϕ. (3.34)

Then, the conditional volume-averaged momentum equation reads:

∂αϕ Uϕ

∂t
+∇•

(
αϕ Uϕ Uϕ

)
=− αϕ∇ pϕ

ρϕ
− ∇• (αϕ τϕ)

ρϕ

+ αϕg + Mϕ,h + Mϕ,p + Mϕ,σ

ρϕ
, (3.35)

where according to the flow type under consideration, Mϕ,p is modelled using equa-
tions 3.33 and 3.34, and Mϕ,σ is modeled adopting equations 3.24 and 3.32 for
dispersed and segregated flow, respectively.

It is left to consider the unbalanced interfacial pressure and shear stress contribution,
Mϕ,h.

Unbalanced interfacial pressure and shear stress contribution

Dispersed flows For the same reasons as already discussed for equation 3.21, it is
justified to do the replacement

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ(. . .) •nI,ϕφΣ = 1
V

∑
Np

∮
Sp

(. . .) •nI,ϕφ dS, (3.36)

76



3.3. Momentum Transfer Closure

since for the closure the averaging volume has been chosen significantly larger than
the characteristic length scale of the flow. Thus, particles intersecting the control
volume’s surface might be neglected.

Assuming particles of one specific (representative) size within the control volume it
is

Mϕ,h = −
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ(
p]I + τ

)
•nI

ϕ

Σ

= − 1
V

∑
Np

∮
Sp

(
p]I + τ

)
I,ϕ
•nI,ϕφ dS

= −npFp, (3.37)

where np ≡ Np/V denotes the particle number density that is the number of particles
per control volume and Fp represents the sum of fluid dynamic forces exerted to a
particle

Mϕ,h = −Np

V
Fp = −Np

V

Vp
Vp

Fp = −αϕ
Vp

Fp. (3.38)

Note that again the choice of phase ϕ being the dispersed phase was made – inher-
ently. Moreover, from the conditional volume-averaged interfacial momentum jump
condition, it follows subsequently that Mϕ,h and Mφ,h balance each other:

Mϕ,h + Mφ,h = 0 ⇔ Mϕ,h = −Mφ,h. (3.39)

Equation 3.38 can be further analyzed, when splitting up the fluid dynamic forces Fp

into two categories, namely drag and non-drag forces as already set out in equation
3.13, and repeated here for convenience:

Mϕ,h = −αϕ
Vp

(
Fd¯

drag-force

+ Fl + Fvm + Ftd´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
non-drag forces

)
. (3.40)

drag force As is well known, the drag force exerted on a particle reads

Fd = −1
2 ρ

φApCd|U
φ − Uϕ|

(
Uφ − Uϕ

)
. (3.41)

Consequently, the corresponding drag force density is

Mϕ,d = 1
2αϕ

Ap
Vp

ρφCd|U
φ − Uϕ|

(
Uφ − Uϕ

)
. (3.42)

Presuming solely spherical particles, the ratio Ap/Vp can be evaluated and
becomes Ap/Vp = 3/(2dp). Then, the drag-force density within the two-fluid
model approach eventually reads in its final functional form

Mϕ,d = 3
4αϕCd

ρφ

dp
|Uφ − Uϕ|

(
Uφ − Uϕ

)
. (3.43)
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3. Closure Framework

The drag coefficient Cd herein is a function of the bubble Reynolds number:

Re ≡ dp|Ur|
νφ

, (3.44)

where dp denotes a characteristic, i.e., representative, diameter of fluid particles
of the dispersed phase ϕ.
This procedure can be adopted to non-drag forces as well. Note that deviations
from a spherical particle shape are usually accounted for only within the models
for the force coefficients, that are then a function of several dimensionless groups
taking into account inertia, viscous, buoyancy and surface tension effects.
Moreover, these models for the force coefficients are based on (mostly) empirical
correlations.

lateral lift force There are various model formulations aiming at the description of
the lateral lift force density. The following is found to be widely used:

Mϕ,l = αϕ ρ
φCl

(
Uφ − Uϕ

)
× ω̄φ with ω̄φ = ∇× Uφ

. (3.45)

The lateral lift force coefficient Cl is modeled as a function of the bubble
Reynolds and the Eötvös number,

Eo ≡

(
ρφ − ρϕ

)
g d2

p

σ
. (3.46)

turbulent dispersion force The turbulent dispersion force density is usually intro-
duced into the momentum balance by a term that is proportional to the
gradient of the dispersed phase volume fraction. Examining the concrete model
formulation, however, particularly the turbulent dispersion force models exhibit
various forms. The following is found to be widely used [30]:

Mϕ,td = Ctd ρ
φ k∇αϕ. (3.47)

Henceforth the dispersion coefficient Ctd shall be assumed constant, taking a
value between 0.1 and 1.0 [31]. Thus, the turbulent dispersion force is assumed
to be proportional to the product of the mean kinetic energy and the gradient
of the volumetric gas phase fraction.

virtual mass force The virtual mass force density is accounted for by the following
model term:

Mϕ,vm = Cvmαϕ ρ
φ

(
Dϕ Uϕ

Dt
− Dφ Uφ

Dt

)
(3.48)

with Di

Dt
≡ ∂

∂t
+ Ui

•∇.

For spherical single bubbles the virtual mass force coefficient reads Cvm = 0.5
[32, 33]. For bubbles with altering shapes this value is usually found to be
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3.3. Momentum Transfer Closure

smaller. However, there are not many reliable correlations, which mostly
has been stated to be the reason for neglecting the virtual mass force so far.
Sokolichin and Eigenberger [34] propose a constant virtual mass force coefficient
of Cvm = 0.25 for these bubbles with variable shapes.

wall lubrication force At this stage, the so-called wall lubrication force shall only be
mentioned as well for completeness. The corresponding force density has first
been introduced by Antal [35] in order to account for the repulsive effect, which
bubbles are exerted to in the vicinity of the column’s wall as a consequence of
an asymmetric incident flow near the wall boundary layer.
However, as models for the wall lubrication force are subject to various restric-
tions and constraints, it is neglected in the further course of this study.

A summary of model correlations for both drag and non-drag force coefficients can
be found in [33,36].

Segregated flows In the concept of partially penetrating continua Mϕ,h in the
interfacial transition region might be identified as interfacial force density due to
unbalanced pressures and viscous stresses, which manifests itself in a dissipative drag
due to interfacial friction in the presence of phase slip.

With ©µ ϕ = µϕ the following relation is proposed for the interfacial force density
accounting for viscous drag:

Mϕ,h ∼
Σ

δ
µϕ
(

Uϕ − ©Uϕ)
, (3.49)

where Σ denotes the interfacial area density according to equation 3.5 that varies
across the interfacial transition region of width δ. As for Σ, a closure model has to
be found for the interfacial width δ.

However, first the relation 3.49 needs to be rewritten by use of equation 3.12 (model
for ©Uϕ

) and 3.5 (model for Σ):

Mϕ,h ∼
|∇αϕ|
δ

µϕ µφ

µϕ + µφ

(
Uϕ − Uφ

)
, (3.50)

which further might be written into a more exploitable form:

Mϕ,h = λ (ReI , πµ) |∇αϕ|
δ

µϕ µφ

µϕ + µφ

(
Uϕ − Uφ

)
, (3.51)

where the proportionality factor has been denoted as λ (ReI , πµ), representing a
dimensionless friction coefficient which holds (unbalanced) tangential inertia and
tangential shear contributions:

λ (ReI , πµ) = mReI + nπµ, (3.52)
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3. Closure Framework

where the parameters m and n have to be chosen appropriate; m = 0.1 . . . 1.5 and
n ≈ 8 have proven adequate. From this, it is evident that the dissipative drag is a
function of the relative phase velocity, that is the averaged slip velocity between the
phases. Note that the interfacial Reynolds number has been defined as

ReI ≡
ρ δ |Uϕ − Uφ|

αϕαφ µϕ µφ/(µϕ + µφ)
. (3.53)

Moreover, for the dimensionless group πµ (viscous shear contribution), it is sug-
gested:

πµ ≡
αϕαφ µ

ϕ µφ/
(
αφ µ

ϕ + αϕ µ
φ
)

µϕ µφ/
(
µϕ + µφ

) . (3.54)

Note in passing that – in the view of the underlying microscopic shear flow scenario
for closure – the numerator of the above expression has been chosen as the harmonic
mean of the phase viscosities weighted with the respective volumetric phase fractions.
This in fact is the correct viscosity value when the flow velocity is parallel to the
interface. For the denominator, the corresponding local instantaneous analogue at
the interface (Iϕ = Iφ = 0.5) has been chosen as dimensionless viscosity term. Note
that this term is also present within our ansatz as given by equation 3.51.

As first attempt for a closure model for δ, it is suggested that

δ ≈ 1
Σ

= 1
|∇αϕ|

, (3.55)

which inversely relates interfacial width δ and interfacial area density Σ, and is
motivated from the closure for the flame brush thickness of an unwrinkled flamelet
[37]. However, it is necessary to adapt the conceptual framework to gas-liquid flows
of segregated type (see corollary note 3.3).
Corollary Note 3.3

Consider the simple gedankenexperiment as illustrated in figure 3.6a. Herein,
a flat surface element of the gas-liquid interface is assumed to oscillate ver-
tically within the interfacial transition region. The boundaries in-between
which this happens is characterized by the root-mean-squared position de-
viation of interfacial fluctuations from the interface mean position. The
resulting distance shall be entitled interfacial width and henceforth be de-
noted as δlI .
This scenario is completely compatible with the model representation of an
isotropic interfacial morphology as illustrated in figure 3.3 and set out for
the interfacial area density Σ on page 65. The interfacial surface element
shall move with a (for now) constant interfacial fluctuation velocity U]

I

– back and forth in the presumed horizontal direction. Furthermore, the
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3.3. Momentum Transfer Closure

(a) fluctuating interface within the interfacial transi-
tion region.

(b) time history of the phase indicator function.

Figure 3.6: Illustration of a fluctuating interface for an isotropic
interfacial morphology.
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3. Closure Framework

phase indicator function Iϕ shall vary smoothly between its limiting values
of unity and zero within a thin transition zone, where on a molecular scale
fluctuations occur governing the inner atomic-scale structure of the diffuse
interface (as it is commonly described by diffuse interface or phase-field
methods). The width δli of this thin transition zone is usually assumed to
be in the order of several nanometers.
To approach a more exploitable expression for the interfacial area density
Σ consider an infinitesimal ’interrogation’ volume δV in the limiting case
where δV → 0. Then, the local interfacial area density reads:

Σ = lim
δV→0

δSI
δV

= lim
δl→0

δSI

(δl)3 , (3.56)

where δl represents the edge length of the ’interrogation’ volume δV , and
δSI denotes the interfacial area density, in case the interface is found to be
in the ’interrogation’ volume (δl)2 multiplied by the time fraction, that it is
effectively present within δV considering the whole fluctuation in progress.
With the help of figure 3.6b showing the time history of the phase indicator
function averaged over δV , it follows

Σ = lim
δl→0

(δl)2 2 (δli + δl) /U]
I

2 (δlI + δl) /U]
I

1
(δl)3 . (3.57)

As a clear scale separation applies,

δl� δlI and δl� δli, (3.58)

which is regarded fulfilled by orders of magnitude, equation 3.57 reduces
to

Σ = 1
δlI

, (3.59)

and thus for the desired closure of the interfacial width, it follows from
equation 3.5

δI(= δ) = 1
|∇αϕ|

. (3.60)

3.3.2. Self-interaction Terms – τϕ and τ φ

A closure model for the conditional volume-averaged (viscous) shear stress tensor τϕ
as a function of other (accessible) averaged quantities can be obtained by examining
the conditional volume-averaged constitutive equation of the local shear stress tensor
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3.3. Momentum Transfer Closure

as given by equation 2.14. This is repeated here for convenience for incompressible
Newtonian fluids:

τ = −µ
(
∇U + (∇U)T

)
. (3.61)

Conditional volume-averaging of equation 3.61 yields for phase ϕ:

αϕ τ
ϕ = − Iϕµ

(
∇U + (∇U)T

)
= − Iϕµ∇U − Iϕµ∇UT

= −∇
(
αϕ µUϕ

)
− ³¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹µ(µU) nI

ϕ
Σ −∇

(
αϕ µUϕ

)T
− ³¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹µnI (µU)

ϕ
Σ. (3.62)

Thus, it follows with the decomposition for the local-instantaneous velocity into an
interfacial averaged and an interface fluctuating velocity (as set out in equation 3.9)
and by taking advantage of the product rule

αϕ τ
ϕ =− µϕ∇

(
αϕ Uϕ

)
− µϕ∇

(
αϕ Uϕ

)T
−
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ(
µ
(©Uϕ

+ U]
I,ϕ

))
nI

ϕ

Σ −
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
nI
(
µ
(©Uϕ

+ U]
I,ϕ

))ϕ
Σ, (3.63)

where the last two terms on the r.h.s. needs to be analyzed further. For instance, for
the first term it is

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ(
µ
(©Uϕ

+ U]
I,ϕ

))
nI

ϕ

Σ =
­
µ
©Uϕ

ϕ

ªnIΣ +
³¹¹¹¹·¹¹¹¹¹µ
µU]

I,ϕ

ϕ

´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
=0

ªnIΣ

= −©µ ϕ©Uϕ
∇αϕ. (3.64)

Hence, finally it is

αϕ τ
ϕ =− αϕ µϕ∇Uϕ − µϕ Uϕ∇αϕ − αϕ µϕ∇UϕT −∇αϕ µϕ Uϕ

+ ©µ ϕ©Uϕ
∇αϕ + ©µ ϕ∇αϕ

©Uϕ

⇒ αϕ τ
ϕ =−

(
αϕ µ

ϕ
(
∇Uϕ +∇UϕT

))
−
((
µϕ Uϕ − ©µ ϕ©Uϕ)

∇αϕ +∇αϕ
(
µϕ Uϕ − ©µ ϕ©Uϕ))

.

(3.65)

By substituting closure models for ©Uϕ
and with ©µ ϕ = µϕ, the conditional volume-

averaged shear stress tensor τϕ might be completely expressed in terms of averaged
flow quantities for different flow types.

Segregated Flows Substituting equation 3.12 for ©Uϕ
into equation 3.65 yields

αϕ τ
ϕ =−

(
αϕ µ

ϕ
(
∇Uϕ +∇UϕT

))
− µϕ µφ

µϕ + µφ

((
Uϕ − Uφ

)
∇αϕ +∇αϕ

(
Uϕ − Uφ

))
. (3.66)
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Examining this reveals that the first term holds the viscous stress contributions of
the phase ϕ to itself, while the second parts account for phase slip, inducing viscous
stress in phase ϕ due to relative motion with respect to phase φ. Note that ∇αϕ
ensures the second contribution to be only non-zero inside the interfacial region.

It is moreover interesting to note that Sun and Beckermann [38] found a similar term.
However, it seems neither rational nor plausible that their phase slip contribution is
proportional to the phase fraction αϕ, since strictly decomposing into terms ∼ αϕ
(i.e., bulk contribution) and terms ∼ ∇αϕ (i.e., a interfacial contribution) – as shown
in equation 3.65 and its derivation – does not result in such an outcome. Furthermore,
it is worth noting that Drew and Passman [1] proposed another closure for τϕ.
However, their approach is deemed quite case-sensitive, as it holds several effective
viscosities for different flow scenarios, which is rather ponderous and avoided by the
above approach.

Dispersed Flows It remains to model the velocity averaged over the interfacial
surface of the fluid particles being possessed within a dispersed two-phase flow system.
In this case it is justified and reasonable to assume ©Uϕ

= Uϕ with ϕ being chosen
to denote the dispersed phase. It follows by substitution into equation 3.65 for the
dispersed phase ϕ:

αϕ τ
ϕ =−

(
αϕ µ

ϕ
(
∇Uϕ +∇UϕT

))
, (3.67)

and similarly for the continuous phase φ:

αφ τ
φ =−

(
αφ µ

φ
(
∇Uφ +∇UφT

))
− µφ

((
Uφ − Uϕ

)
∇αφ +∇αφ

(
Uφ − Uϕ

))
. (3.68)

Note that the last term on the r.h.s. of equation 3.68 is non-zero only in the presence
of a gradient of the volumetric phase fraction ∇αϕ, while an analog counterpart is not
appearing at all in equation 3.67. Thus, the second contribution can be interpreted
as net shear stress in the continuous phase being induced by the dispersed phase due
to phase slip.

3.4. Interfacial Transport Closure

Assuming an isotropic interfacial morphology for segregated flows (as described in
section 3.2.1) and taking into account equation 3.36 for dispersed flows, the volume-
averaged interfacial transport equation 2.104 reduces for both cases to

∂αϕ
∂t

+ ©Uϕ
•∇αϕ = 0. (3.69)

Thus, in order to arrive at a closed governing equation, a model for ©Uϕ
needs to be

involved – both for segregated and for dispersed flow types.
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3.5. Final Forms of Governing Equations

Dispersed Flow As it already has been described for the conditional volume-
averaged shear stress, it is justified and physically reasonable to presume

©Uϕ
= Uϕ

. (3.70)

Hence, the volume-averaged interfacial transport is governed by
∂αϕ
∂t

+ Uϕ
•∇αϕ = 0. (3.71)

Segregated Flow According to equation 3.12, the interfacial averaged velocity can
be modeled as

©Uϕ
= µϕ Uϕ + µφ Uφ

µϕ + µφ
. (3.72)

Consequently, the volume-averaged interfacial transport equation for segregated flows
reads

∂αϕ
∂t

+
[
µϕ Uϕ + µφ Uφ

µϕ + µφ

]
•∇αϕ = 0. (3.73)

For free-surface flows (µφ � µϕ) the interfacial averaged velocity reduces to
©Uϕ

= Uϕ
. (3.74)

Thus, equation 3.73 and 3.71, i.e., the volume-averaged interfacial transport equation
for dispersed and free-surface segregated flow, are found to take identical forms:

∂αϕ
∂t

+ Uϕ
•∇αϕ = 0. (3.75)

3.5. Final Forms of Governing Equations

3.5.1. Two-Field Equations

From the conditional volume-averaged continuity equation 2.84, it follows by sum-
ming up for both phase ϕ and φ and taking into account αφ = 1− αϕ:

∇•
(
αϕ Uϕ + αφ Uφ

)
= 0 ⇔ ∇•U != 0. (3.76)

The volume-averaged interfacial transport equation 3.69 reads
∂αϕ
∂t

+ ©Uϕ
•∇αϕ = 0. (3.77)
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The conditional volume-averaged momentum equations eventually take the following
form:

∂αϕ Uϕ

∂t
+∇•

(
αϕ Uϕ Uϕ

)
=− αϕ∇ pϕ

ρϕ
− ∇• (αϕ τϕ)

ρϕ

+ αϕg + Mϕ,h + Mϕ,p + Mϕ,σ

ρϕ
, (3.78)

and

∂αφ Uφ

∂t
+∇•

(
αφ Uφ Uφ

)
=− αφ∇ pφ

ρφ
−
∇•
(
αφ τ

φ
)

ρφ

+ αφg + Mφ,h + Mφ,p + Mφ,σ

ρφ
. (3.79)

The corresponding closure terms are summarized in table 3.2. The respective deriva-
tions and underlying assumptions have been described in considerable detail in the
above sections.
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s
ofG

overning
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segregated flow type dispersed flow type

m
om

en
tu
m

tr
an

sfe
r

ph
as
e-
in
te
ra
ct
io
n

mean interfacial pressure contribution

Mϕ,p = − αϕαφ ρ
ϕ ρφ

αϕ ρφ + αφ ρϕ
|Uφ − Uϕ|2 ∇αϕ Mϕ,p = −0.37 ρφCd|U

φ − Uϕ|2 ∇αϕ

Mϕ,σ = αϕ 4αϕαφ σ
(
∇•
(
∇αϕ
|∇αϕ|

)
+ 4Σ0 (1− 2αϕ)

)
∇αϕ Mϕ,σ = 0

unbalanced interfacial pressure and shear stress contribution

Mϕ,h = λ (ReI)
|∇αϕ|
δ

µϕ µφ

µϕ + µφ

(
Uϕ − Uφ

)
Mϕ,h = −αϕ

Vp

(
Fd¯

drag-force

+ Fl + Fvm + Ftd´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
non-drag forces

)
se
lf-

in
te
ra
ct
io
n

αϕ τ
ϕ =−

(
αϕ µ

ϕ
(
∇Uϕ +∇UϕT

))
− µϕ µφ

µϕ + µφ

((
Uϕ − Uφ

)
∇αϕ +∇αϕ

(
Uϕ − Uφ

))

dispersed phase ϕ :
αϕ τ

ϕ =−
(
αϕ µ

ϕ
(
∇Uϕ +∇UϕT

))
continuous phase φ :

αφ τ
φ =−

(
αφ µ

φ
(
∇Uφ +∇UφT

))
− µφ

((
Uφ − Uϕ

)
∇αφ

+ ∇αφ
(

Uφ − Uϕ
))

in
te
rfa

ci
al

tr
an

sp
or
t

©Uϕ
= µϕ Uϕ + µφ Uφ

µϕ + µφ
©Uϕ

= Uϕ

Table 3.2: Overview – Closure terms for dispersed and segregated
two-phase flow.87
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3.5.2. Single-Field Equations

Further insights might be gained, considering the so-called single-field equations,
which are obtained by summing up the two-field equations for each phase ϕ and φ,
respectively. In doing so, the two mass and momentum conservation equations will
be replaced by one conservation equation for mass and momentum of the system’s
center-of-mass [8, 39–42].

For further derivations, it is useful to define mixture quantities in order to arrive at
a more compact form after summing up the respective equations:

• The mixture density and viscosity are defined as

ρ ≡ αϕ ρϕ + αφ ρ
φ and µ ≡ αϕ µϕ + αφ µ

φ (3.80)

• The center-of-mass velocity and phase relative velocity are defined as

Um ≡
αϕ ρ

ϕ Uϕ + αφ ρ
φ Uφ

αϕ ρϕ + αφ ρφ
and (3.81)

Ur ≡ Uϕ − Uφ
. (3.82)

These provide local measures for the system’s mean velocity with respect to
its center-of-mass and for the system’s mean velocity difference between the
phases, respectively.

• We further assume a mixture pressure that is shared by both phases:

pϕ = pφ = p. (3.83)

This is a commonly adopted assumption. Nevertheless, aside from numerical
reasons (q.v. pg. 121), a physical justification for assuming a mixture pressure is
rarely provided. However, looking into diffuse interface or phase-field methods,
which are based on thermodynamic considerations, a physical foundation of
this assumption might be postulated: Sun and Beckermann, who conceptually
link phase-field methods and conditional volume-averaging on the microscopic
(atomistic) scale in [38], state in the absence of phase-change

pϕ − pφ = −δ Mσ •
∇αϕ
|∇αϕ|

. (3.84)

Consequently, the two phasic pressures are equivalent in the so-called sharp
interface limit, that is in the limit when the interfacial thickness tends to zero
(δ → 0). In turn, a condensed notation which holds the mixture pressure p in-
stead of the phasic ones is physically justified if a sharp interface representation
can be ensured.
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With this, the conditional volume-averaged phase velocities can be rewritten in terms
of the center-of-mass velocity and phase relative velocity:

Uϕ = Um + αφ ρ
φ

ρ
Ur and (3.85)

Uφ = Um −
αϕ ρ

ϕ

ρ
Ur, (3.86)

Defining γ ≡ αϕ and eliminating Uϕ in the conditional volume-averaged continuity
equation 2.84 using equation 3.85 yields in terms of mixture quantities:

∂γ

∂t
+∇• (γUm) = −∇•

(
γ (1− γ) ρφ

ρ
Ur

)
. (3.87)

However, note that by underlying the conditional volume-averaged continuity equa-
tion 2.84 instead of the volume-averaged interfacial transport equation 3.69, the
assumption of a free-surface flow has been made inherently. As αφ = (1− αϕ) =
(1− γ), the same procedure for phase φ results in

−∂γ
∂t

+∇• ((1− γ) Um) = ∇•
(
γ (1− γ) ρϕ

ρ
Ur

)
. (3.88)

Summing up the interfacial transport equations for both phases ϕ and φ, finally
yields

∇•Um = ∇•
(
γ (1− γ) ρ

ϕ − ρφ

ρ
Ur

)
⇔∇•U = 0, with U ≡ αϕ Uϕ + αφ Uφ = γUγ + (1− γ)U1−γ . (3.89)

As can be seen, the center-of-mass velocity field Um is only solenoidal if the phase
densities are equal, i.e., ρϕ = ρφ, or the relative velocity vanishes, whereas the
volumetric mixture velocity field U is always found to be solenoidal (for constant
phase densities). Moreover, if we multiply the conditional volume-averaged conti-
nuity equations 2.84 for both phases ϕ and φ by their respective phase density and
subsequently sum up, this results in the mixture continuity equation, which takes the
following form:

∂ρ

∂t
+∇• (ρUm) = 0 ⇔ Dρ

Dt
= ∂ρ

∂t
+ Um•∇ρ = −ρ∇•Um. (3.90)

Note, that this equation has the same form as for single-phase flows. However, in
contrast to the single-phase case, the local velocity and density have been replaced by
the center-of-mass velocity and the mixture density, respectively. Hence, the mixture
continuity equation reveals that the mixture is compressible inside the interfacial
transition region, since generally ∇•Um 6= 0⇒ Dρ

Dt 6= 0.
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Finally, in order to arrive at the mixture momentum equation, the same procedure
is to be adopted: the momentum equations for both phases ϕ and φ, i.e., equations
3.78 and 3.79, needs to be summed up.

∂
(
αϕ ρ

ϕ Uϕ + αφ ρ
φ Uφ

)
∂t

+∇•
(
αϕ ρ

ϕ Uϕ Uϕ + αφ ρ
φ Uφ Uφ

)
=−

(
αϕ∇ pϕ + αφ∇ pφ

)
−∇•

(
αϕ τ

ϕ + αφ τ
φ
)

+
(
αϕ ρ

ϕ + αφ ρ
φ
)

g + Mσ,

(3.91)

since Mϕ + Mφ = Mσ according to equation 2.96.

The divergence term on the r.h.s. of equation 3.91 can be rewritten in terms of
mixture quantities using equations 3.85 and 3.86:

αϕ ρ
ϕ Uϕ Uϕ + αφ ρ

φ Uφ Uφ = αϕ ρ
ϕUmUm + 2αϕαφ ρ

ϕ ρφ

ρ
UmUr

+ αϕ ρ
ϕαφ ρ

φ

ρ

αφ ρ
φ

ρ
UrUr + αφ ρ

φUmUm − 2αϕαφ ρ
ϕ ρφ

ρ
UmUr

+ αφ ρ
φαϕ ρ

ϕ

ρ

αϕ ρ
ϕ

ρ
UrUr
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≡Di (momentum drift-flux term)

. (3.92)

Moreover, it follows for the divergence term on the l.h.s. of equation 3.91 using
equation 3.66:

αϕ τ
ϕ + αφ τ

φ =− αϕ µϕ
(
∇Uϕ +∇UϕT

)
− αφ µφ

(
∇Uφ +∇UφT

)
=−µ

(
∇Um +∇UT

m

)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
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´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≡τ i (interfacial friction tensor)

. (3.93)

Finally, equation 3.91 takes the form:
∂ρUm

∂t
+∇•ρUmUm = −∇p−∇• (τm + τ i)−∇• (ρDi) + ρg + Mσ. (3.94)
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3.5. Final Forms of Governing Equations

It is important to note that these governing equations are not widely employed to
study segregated flows, though the set of equations looks quite similar compared to
the set underlying the well-known Volume-Of-Fluid Method, for instance. The central
discrepancy, however, is found in the fact that the VoF model relies on local Navier-
Stokes and continuity equations, and the local interface transport equation, while
the above single-field equations have actually been volume-averaged. In consequence,
additional terms are present, which needs to be discussed further:

momentum drift-flux term Di as defined in equation 3.92 expresses the differences
between the fully resolved momentum flux (involving contributions from the
relative phase velocity) and the averaged momentum due to the center-of-mass
velocity. Therefore, this term is called momentum drift-flux term (MDF term)
henceforth.

interfacial friction tensor τ i as defined in equation 3.93 clearly arises from viscous
forces and is non-zero only within the interfacial transition region. Hence, this
term can be referred to as interfacial friction tensor.

Since both Di and τ i depend on Ur, further modeling is necessary, in order to
close the mixture momentum equation. The easiest closure might be to assume
Ur = 0. This is commonly referred to as homogeneous mixture assumption, which
is only found to be fulfilled under specific constraints: I.e., this is only valid for
systems where the difference between the characteristic velocities of the two phases
is small. For instance, in cases where the interfacial boundary layer is not sufficiently
resolved, each phase velocity differs from the center-of-mass velocity in the interfacial
transition region. In consequence, the spatial resolution, i.e., the characteristic
length scale of the averaging volume (spatial filter width) must be carefully assessed
before adopting the homogeneous mixture assumption. One has to bear in mind
that the averaging/control volume has been implicitly defined through the adopted
conditional volume-averaging procedure. Thus, underlying the homogeneous mixture
assumption, inherently involves neglecting the scales beneath that of the control
volume.

However, if the homogeneous mixture assumption is justified (e.g., for vanishingly
small Ur), the above single-field equations properly reduce to that of the local VoF
method, as it is well-known and widely used in literature.
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4
Numerical Method

If you think dogs can’t count, try putting
three dog biscuits in your pocket and then
giving Fido only two of them.
Phil Pastoret

Numerical quantities focus on expected
values. . .
John Tukey

Abstract

As set out in chapters 2 and 3, the mathematical model to describe two-phase flows takes
the form of a set of partial differential equations along with corresponding boundary and
initial conditions. These fully describe a two-phase problem; however, the mathematical
model can not be solved analytically. Thus, an approximative (numerical) solution
procedure is needed.

The present chapter deals with the numerical solution methodology which transfers the
continuous physical domain into a discretized computational domain enabling to numer-
ically solve for a system of algebraic equations instead of partial differential equations.
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4. Numerical Method

4.1. Introduction

The basic premise of an approximative numerical method is that the solution is
sought for the discretized computational domain, which comprises a finite number of
computational nodes in space and time. In general, the aim is to provide an adequate
representation of the solution for the continuous physical domain. This concerns both
accuracy and correctness (conservation, continuity, boundedness and realisability) of
the approximative numerical solution. Moreover, for consistency, in increasing the
number of computational nodes (up to infinity) the approximative numerical solution
must approach the exact one – and finally exactly meet it.

The numerical solution methodology can be categorized into three consecutive
steps:

1.) Domain Discretization
The domain discretization encompasses the sub-division of the continuous phys-
ical domain into sub-entities both in space (spatial discretization) and in time
(temporal discretization). Consequently, the spatial sub-entities are referred
to as control volumes (CV, or simply cell), the collection of which defines and
bounds the spatial solution domain. Similarly, the temporal sub-entities are
referred to as time steps (or time intervals) henceforth.

2.) Equation Discretization
Having at hand a discretized solution domain, the governing transport equa-
tions, stating the mathematical model, are to be discretized as well. They
are first integrated over each control volume. Then, the resulting volume
integrals are translated into surface integrals applying Gauss’ theorem. By
use of interpolation (differencing schemes) the values of dependent variables on
the CV surfaces are rewritten in terms of cell-centered values. These values
are needed for the evaluation of the surface integrals and eventually enable
to assemble a set of algebraic equations for the dependent variables in each
cell written in terms of neighboring cell values. Finally, the set of algebraic
equations for a particular dependent variable under consideration is ready for
its numerical evaluation.

3.) Solution Method and Algorithm
The solution procedure generally needs to be seen on two distinct levels in a
bottom-up approach:

3.1.) the core-level, covering the solution methods for solving a system of
algebraic equations
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4.2. Domain Discretization

3.2.) the top-level, covering the steps of the solution algorithm, which handles
multiple (possibly coupled) discretized governing equations. This step
must further ensure the accuracy and correctness of the result – as already
requested before.

Each of the above levels exhibits two solution strategies:

ad 3.1) On the core-level, solution methods might be grouped according to
their use of either direct solvers or iterative solvers.

ad 3.2) On the top-level, solution algorithms might be categorized into simul-
taneous/block or segregated top-level approaches.

For efficiency reasons, solely iterative solvers and the segregated approach shall
be considered in this study for solving the system of algebraic equations (core-
level) and the overall set of coupled discretized governing equations (top-level),
respectively.

As it is set out below, the current implementation and numerical simulations were
accomplished by use of the Open Source CFD toolbox OpenFOAM®. This is a
versatile C++ library suitable for all kinds of continuum problems [1,2]. OpenFOAM
is based on an unstructured mesh formulation with a collocated cell-centered variable
arrangement featuring unstructured boundary-fitted meshes (including topological
mesh changes) for arbitrary complex geometries. Along with its spatial and tem-
poral discretization being of second order accuracy, OpenFOAM enables to examine
continuum problems in a generalized and flexible manner.

4.2. Domain Discretization

4.2.1. Spatial Discretization

Figure 4.1 depicts a typical control volume (CV) stating the sub-entity evolving from
the sub-division of the spatial solution domain (spatial discretization). Here, the CV
represents a computational cell, which is allowed to possess an arbitrary shape, i.e.,
a convex polyhedron. The CV’s centroid P represents a computational node and is
located in xP , such that

∫
VP

(x− xP ) dV != 0, where VP denotes the cell’s volume.

The CV is bounded by a set of faces f that are likewise allowed to be of arbitrary
shape, i.e., convex polygons, the geometrical centroid of which is located in xf , being
defined as

∫
f
dSf (x− xf)

!= 0.

A representative (again arbitrary) CV, adjacent to P , shall be denoted as N with
the delta vector d connecting the centroids of P and N , d ≡ xP − xN = PN .
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4. Numerical Method

Figure 4.1: Control volume.

Furthermore, in this generalized nomenclature, Sf represents the outward pointing
face area vector normal to the face f between P and N . The magnitude of the face
area vector is equal to the face area itself, Sf ≡ |Sf |. Henceforth the case d ‖ Sf shall
be referred to as orthogonal, whereas d ∦ Sf is denoted as non-orthogonal.

4.2.2. Temporal Discretion

For transient problems temporal discretization is to be considered. This involves sub-
dividing the temporal solution domain into time steps covering certain time intervals
of a specific size ∆t – which itself might be uniform or non-uniform (adaptive time-
stepping).

4.3. Equation Discretization

Having discretized the solution domain both in space and in time, the governing
transport equations, i.e., the mathematical model (in the form of a system of partial
differential equations), needs to be discretized correspondingly.

In order to examine the details of the discretization practice in a generic manner it is
rational to reconsider governing equations in form of the generic transport equation
for an arbitrary general flow quantity φ – as already introduced in chapter 2 and
repeated here for the sake of convenience:

∂

∂t
(ρφ) +∇• (ρφU)−∇• (Γφ,d∇φ)− Sφ(φ) = 0. (4.1)

Note however, that in contrast to chapter 2, these equations expediently refer to the
volume-averaged, i.e., the spatially (box-) filtered, state – as it has been the result
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of chapter 3 after conditional volume-averaging and closure modeling. However, for
readability the overbar-notation indicating the volume-average shall be dropped in
the remainder. Hence, it is remarkable that the generic transport equation 4.1 still
comprises the same structure, that we have derived for the local-instantaneous case
for single-phase flows. This in turn renders Eulerian two-phase flow models suitable
to be treated with the same numerical solvers that were originally developed for
single-phase flows. However, compared to single-phase flows, different constraints
have to be considered for two-phase flow models in order to ensure consistency – see
corollary note 4.1.

Corollary Note 4.1
The requirement of consistency for the numerical solution methodology
– that is the numerical solution must approach the physical one when
decreasing the size of the underlying control volumes (increasing their num-
ber up to infinity) – needs to be reconsidered: a meaningful evaluation of
the closure terms relies upon the volume-averaged phase-indicator function
being interpretable as volumetric phase fraction. Thus, the size of the
averaging volume, i.e., the spatial filter width, needs to be identical to the
size of the control volume. Moreover, as the form of the closure relies upon
an appropriate choice of the size of the control volume – dependent on
the concrete two-phase flow scale to be captured – it is required that the
control volume size (cell size) is not freely reducible, but has a lower limit
constrained by the interfacial structure under consideration and the closure
model, the validity of which needs to be preserved. This in consequence
states the pivotal difference compared to the single-phase case, that one has
to bear in mind when examining the equation discretization for a system
of volume-averaged governing equations corresponding to a two-phase flow:
the spatial resolution is not freely reducible.

In the framework of the FVM, equation 4.1 has to be integrated over the control
volume yielding its integral form:

∫
VP

∂

∂t
(ρφ) dV +

∫
VP

∇• (ρφU) dV −
∫
VP

∇• (Γφ,d∇φ) dV =
∫
VP

Sφ(φ) dV

⇔
∫
VP

∂

∂t
(ρφ) dV +

∮
S
ρφ (n•U) dS −

∮
S
Γφ,d (n•∇φ) dS =

∫
VP

Sφ(φ) dV

(4.2)

As equations 4.1 and 4.2 involve a second order derivative of φ in space that is the
diffusion term, these equations are of second order. For accuracy and consistency
the underlying discretization method must be of the same or higher order than the
equation being discretized. This requirement is fulfilled when presuming a linear
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variation of φ (x, t) both in space (around P ) and in time (around t), which is
accomplished via a Taylor Series expansion according to:

φ (x) = φP + (x− xP ) • (∇φ)P +O
(
|x− xP |2

)
and (4.3)

φ (t+∆t) = φt +∆t

(
∂φ

∂t

)t
+O

(
∆t2

)
, (4.4)

where φP = φ (xP ) and φt = φ (t). Note that O
(
|x− xP |2

)
and O

(
∆t2

)
denote the

truncation terms indicating the second order accuracy. Henceforth these truncation
terms are dropped for readability.

As set out in equation 4.2, each term in the integral form of the generic transport
equation, upon which the finite volume discretization is based, contains either volume
or surface integrals. These can be evaluated in a second order manner by substitution
of the prescribed variation of φ in space (equation 4.3):

• volume integral∫
VP

φdV =
∫
VP

[φP + (x− xP ) • (∇φ)P ] dV

= φP

∫
VP

dV + (∇φ)P •
∫
VP

(x− xP ) dV = φPVP . (4.5)

• surface integral∮
S

nφdS =
∑
f

∫
Sf

n (φ (x))
f
dSf

=
∑
f

∫
Sf

n
[
φf + (x− xf) • (∇φ)

f

]
dSf =

∑
f

Sfφf . (4.6)

Moreover, for the approximative evaluation of the volume integrals of gradient and
divergence terms, we might rewrite Gauss’ theorem in its discretized form (compare
to equations 2.3 and 2.4):∫

VP

∇•a dV =
∫
S
dS•a =

∑
f

∫
Sf

dS•a =
∑
f

Sf •af (4.7)∫
VP

∇a dV =
∫
S
dSa =

∑
f

∫
Sf

dSa =
∑
f

Sfaf , (4.8)

which now enables to consider the discretization of equation 4.2 on a term-by-term
basis. Obviously, the solution procedure basically might be broken down to the
evaluation of the face values of φ.

However, in the context of Eulerian two-phase flow models being the central subject
of this thesis, it has to be emphasized that any discretization practice needs to meet
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prerequisites with respect to phase boundedness: small errors in the volume fraction
will correspond to large ones in mass fraction due to a typically high density ratio.
Hence, in the following, comments shall be provided on this central issue along with
the description of the discretization practice of each term in equation 4.2.

4.3.1. Convection Term

The finite volume discretization of the convection term is accomplished by first
converting it into a sum over the faces by use of Gauss’ theorem according to equation
4.7 and then approximating it numerically as∫

VP

∇• (ρφU) dV =
∑
f

Sf • (ρφU)
f

≈
∑
f

Sf • (ρU)
f
φf =

∑
f

F φf , (4.9)

where F ≡ Sf • (ρU)
f
shall be denoted as face mass flux henceforth. The face mass

flux needs to be provided directly from the algorithm (section 4.5) to ensure continuity
for every CV, i.e., it is for incompressible flows∫

VP

∇• (ρU) dV =
∑
f

Sf • (ρU)
f

=
∑
f

F
!= 0. (4.10)

The cell face average values φf are approximated from the cell center values using an
appropriate face interpolation scheme or differencing scheme.

Differencing Schemes

Generally, the choice of differencing schemes is a matter of boundedness and accuracy
the scheme needs to ensure for the solution, and further a matter of stability and
computational efficiency the scheme needs to guarantee for the overall solution
procedure. Both aspects are discussed thoroughly by Jasak in [3].

In what follows a brief overview is given over both basic (central and upwind) and
more sophisticated (blending or switching) differencing schemes.

• Central Differencing (CD) – linear face interpolation
The face-centered value is found by linearly interpolating between the cell-
centered values at P and N – as illustrated in figure 4.2:

φf = fxφP + (1− fx)φN , (4.11)

where the linear interpolation factor fx is defined as

fx ≡
|xf − xN |
|d| = fN

PN
. (4.12)
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Figure 4.2: Central differencing.

While central differencing is second order accurate, it does not ensure bounded-
ness – especially being a problem with increasing convection dominance causing
non-physical oscillation of the solution.

• Upwind Differencing (UD) – flux-direction dependent face interpolation
A simple remedy for the aforementioned shortcoming of the CD scheme might
comprise of taking into account the direction of the face flux. In the upwind
differencing scheme the face value is determined from the cell value in upstream
flow direction:

φf = max (F, 0)φP + min (F, 0)φN

=
{
φP for F ≥ 0
φN for F < 0

. (4.13)

Upwind differencing ensures unconditional boundedness at the cost of numer-
ical diffusion, i.e., the leading term of the truncation error is a function of
(xf − xP ) • (∇φ)P – a diffusion-like term.

• Switching/Blending Schemes – superposition of UD and CD
These schemes attempt to preserve boundedness while maintaining a reasonable
accuracy. This is accomplished by superposing CD and UD as

φf = φf(F,UD) + γ
(
φf(CD) − φf(F,UD)

)
, (4.14)

where the switching/blending criterion is chosen 0 ≤ γ ≤ 1. γ = 1 leads to
a CD and γ = 0 to a full upwind discretization practice. There are different
evaluation procedures for γ dependent on distinct boundedness criteria, e.g.,
the cell Peclet number γ(Pec) or the local shape of the solution γ(φ). The
values of γ are either evaluated for all faces of the mesh as a constant or on a
face-by-face basis. Nowadays one of the most sophisticated approaches appears
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Figure 4.3: Switching/Blending differencing schemes – Variation of φ
around the face f .

to be based on the Normalised Variable Approach (NVD) of Leonard [4] and
Gaskell et al. [5] where normalized variables are defined as

φP̃ = φP − φU
φD − φU

and φf̃ = φf − φU
φD − φU

, (4.15)

with the subscripts U and D denoting the cells upwind and downwind to P ,
respectively – dependent on the flow direction as depicted in figure 4.3.

In order to avoid unphysical oscillations local boundedness is required:

φU
!
≤ φP

!
≤ φD or vice versa φU

!
≥ φP

!
≥ φD, (4.16)

or as convection boundedness criterion (CBC) in terms of φP̃ :

0
!
≤ φP̃

!
≤ 1. (4.17)

It is shown in [3] that the boundedness criterion according to equation 4.17 can
be illustrated within the so-called NVD diagram as given in figure 4.4 depicting
φf̃ as a function of φP̃ :

– The convection boundedness criterion 0 ≤ φP̃ ≤ 1 is fulfilled within the
shaded area, bounded by φf̃ = φP̃ as lower limit and φf̃ = 1 as upper one.

– For unboundedness (φP̃ < 0 or φP̃ > 1) it is φf̃ = φP̃ .

As can be seen from the NVD diagram, the choice of the discretization practice
to ensure boundedness is more or less free for 0 ≤ φP̃ ≤ 1.

Note that for the purpose of applicability to arbitrary meshes φP̃ has to be
modified according to Jasak [3]

φP̃ = 1−
(∇φ)

f
•d

2 (∇φ)P •d
, (4.18)
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1

1

1
2

1
2

Figure 4.4: Convection boundedness criterion in the NVD diagram.

where P must be chosen upwind to the face f ; and d = xD − xP .

Depending on the normalized variable φP̃ the blending factor γ might now be
evaluated, e.g., using the auxiliary βm according to the Gamma scheme [6]:

γ
(
φP̃
)

=


0 for φP̃ ≤ 0
φP̃ /βm for 0 < φP̃ < βm

1 for βm ≤ φP̃ < 1
0 for φP̃ ≥ 1

, (4.19)

or equivalent in terms of φf̃ being calculated from φP̃ :

φf̃
(
φP̃
)

=



φP̃ for φP̃ ≤ 0

− φP̃
2

2βm +
(
1 + 1

2βm

)
φP̃ for 0 < φP̃ < βm

1/2 + 1/2φP̃ for βm ≤ φP̃ < 1
φP̃ for φP̃ ≥ 1

. (4.20)

Thus the NVD diagram of the Gamma differencing scheme results as shown in
figure 4.5a.

A variant of the Gamma scheme being utilised in this work along with Eulerian
interface capturing, is the inter-Gamma scheme [7] as set out below.

γ
(
φP̃
)

=


0 for φP̃ ≤ 0
4φP̃ for 0 < φP̃ < 1/2
2 for 1/2 ≤ φP̃ < 1
0 for φP̃ ≥ 1

, (4.21)
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1

1

βm

1
2

UDS

CDS

blending

φf̃

φP̃

(a) Gamma scheme, [6].

1

1

1
2

UDS

DDS

blending

φf̃

φP̃

(b) inter-Gamma scheme, [7].

Figure 4.5: Family of Gamma differencing schemes in the NVD
diagram.
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or in terms of φf̃

φf̃
(
φP̃
)

=


φP̃ for φP̃ ≤ 0
−2φP̃

2 + 3φP̃ for 0 < φP̃ < 1/2
1 for 1/2 ≤ φP̃ < 1
φP̃ for φP̃ ≥ 1

, (4.22)

resulting in the representation of the inter-Gamma scheme in the NVD diagram
as depicted in figure 4.5b.

As can be seen, the objective when developing the inter-Gamma scheme cer-
tainly was to create a smooth transition from upwind (UDS) to downwind
differencing (DDS) for 0 < φP̃ < 1/2 and to use downwind differencing for
1/2 ≤ φP̃ < 1. Otherwise, i.e., for φP̃ ≥ 1 and φP̃ ≤ 0, upwind differencing
is utilized in order to preserve boundedness. In doing so, the inter-Gamma
scheme effectively introduces an anti-diffusion term by downwind differencing
which counteracts numerical diffusion due to upwind differencing. Thus this
discretization practice does not overly ’diffuse’ the interface (maintaining the
interface profile as sharp as possible), while preserving the boundedness of
the transport quantity (volumetric phase fraction between zero and unity).
However, due to this compressive characteristics (and for time accuracy) a
Courant number limit has to be taken into account, 1/5 ≤ Comax ≤ 1/3.

4.3.2. Diffusion Term

The diffusion term can be discretized in the same manner as before using Gauss’
theorem. This yields∫

VP

∇• (Γφ,d∇φ) dV =
∑
f

Sf • (Γφ,d∇φ)
f
≈
∑
f

(Γφ,d)f Sf • (∇φ)
f
, (4.23)

where both (Γφ,d)f and Sf • (∇φ)
f
needs further examination:

1.) face interpolation of Γφ,d
Face interpolation of Γφ,d can either be done as set out by equation 4.11 that is
by use of linear interpolation (Γφ,d)f(CD) (single-phase flow) or by taking into
account the interface / cell-face orientation (two-phase flow), since Γφ,d usually
takes different values within the interiors of different phases.

Following Patankar [8] and Kothe [9] the latter is accomplished appropriately
as

(Γφ,d)f = ηf (Γφ,d)pf + (1− ηf) (Γφ,d)sf , (4.24)
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where the superscripts p and s denote the parallel (harmonic) and the serial
(geometric) average, respectively. ηf represents an interpolation factor account-
ing for an appropriate weighting of geometric and harmonic contributions to
(Γφ,d)f according to the relative interface / cell-face orientation:

ηf ≡
∣∣∣∣∣
(

(∇αϕ)
f

|(∇αϕ)
f
|

)
•

Sf
|Sf |

∣∣∣∣∣ , (4.25)

which approaches zero or unity for extreme orientations, that are the face-
interpolated mean interface unit normal (∇αϕ)

f
/|(∇αϕ)

f
| being perpendicular

or parallel to the unit cell face normal Sf/|Sf |. In between these extremes ηf is
varying smoothly between zero and unity.

2.) approximation of the face normal gradient Sf • (∇φ)
f

The evaluation of the face normal gradient Sf • (∇φ)
f
for orthogonal meshes,

that is for Sf ‖ d, reads

Sf • (∇φ)
f

= |Sf |
φN − φP
|d| , (4.26)

representing the component of the gradient in the direction of d. Furthermore,
note the compact computational molecule compared to simply interpolating
the cell-centered gradients linearly:

Sf • (∇φ)
f

= Sf • [fx (∇φ)P + (1− fx) (∇φ)N ] , (4.27)

where (∇φ)P = 1
VP

∑
f

Sfφf .

However, for non-orthogonal meshes, i.e., for Sf ∦ d – which states the general
case in CFD as shown in figure 4.6, for instance – the compact evaluation
according to equation 4.26 is no longer valid. Hence to make use of the higher
accuracy the following split renders necessary:

Sf • (∇φ)
f

= |Sd|
φN − φP
|d| + S∆• (fx (∇φ)P + (1− fx) (∇φ)N ) , (4.28)

where Sd is chosen parallel to d allowing the use of equation 4.26 for a more
accurate evaluation of the orthogonal contribution to the face normal gradient
Sf • (∇φ)

f
, while limiting the less accurate method according to equation 4.27

to the evaluation of the non-orthogonal contribution. For consistency, S∆ must
satisfy:

Sf = Sd + S∆. (4.29)
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Figure 4.6: Non-orthogonal correction.

As can be seen, this constraint leaves some scope of variability for the concrete
choice of S∆. In [3] Jasak identified the so-called ’over-relaxed’ approach as the
most robust and convergent. It reads

S∆ = d
d•Sf

|Sf |2. (4.30)

However, this formulation might give rise to unboundedness, especially on
highly non-orthogonal meshes. In such cases it might become necessary to
limit the magnitude of the non-orthogonal contribution decreasing the formal
accuracy in order to preserve boundedness. One way of limiting the non-
orthogonal contribution comprises of imposing a limiter such that its magnitude
is not allowed to exceed the magnitude of the orthogonal contribution [10].

4.3.3. Source Term

All terms that cannot be considered as convection, diffusion or temporal terms in
the generic transport equation are to be loosely classified as source and sink terms,
Sφ (φ).

In general the source term Sφ (φ) is allowed to be a function of time, space, other vari-
ables and the solution φ itself. In order to promote both stability and boundedness
typically linearisation with respect to φ is performed before the actual discretization
is applied to the source term Sφ (φ):

Sφ (φ) = Su + Spφ with Sp = ∂Sφ (φ)
∂φ

, (4.31)
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where both Su and Sp are allowed to be a function of φ. Integration of equation 4.31
over the control volume then yields∫

Vp
Sφ (φ) dV = SuVP + SpVPφP . (4.32)

As might be evident and has been intimated before, there is some scope of variability
in the concrete form of a particular source term. Generally it is advisable to examine
its interaction with other terms as well as its influence on accuracy and boundedness
of the solution. It is further certainly wise to treat the source ’as implicit as possible’
– as will become clear in the sequel.

4.3.4. Time Integration

Before describing the temporal derivative and the time integration of the generic
transport equation in detail, we shall first define the time levels needed therefore.
Underlying the prescribed temporal derivation, and thus the time-step size ∆t,
enables to define these time levels as

tn = to +∆t and to = too +∆t, (4.33)

with the superscript n, o and oo denoting the new, the first old and the second old
time levels, respectively.

Presuming that the control volumes do not change in time, the temporal term can
be treated using the same rationale as for the source terms. Applying the Leibniz’
theorem, it is:∫ t+∆t

t

[∫
VP

∂ρφ

∂t
dV

]
dt =

∫ t+∆t

t

∂

∂t

[∫
VP

ρφ dV

]
dt =

∫ t+∆t

t
VP

∂

∂t
(ρPφP ) dt.

(4.34)

With this, time integration of the generic transport equation can be performed
yielding its so-called semi-discretized form:∫ t+∆t

t

[(
∂ρφ

∂t

)
VP +

∑
f

Fφf −
∑
f

(Γφ,d)f Sf • (∇φ)
f

]
dt

=
∫ t+∆t

t
[SuVP + SpVPφP ] dt. (4.35)

Rearrangement of equation 4.35 to∫ t+∆t

t

(
∂ρφ

∂t

)
VP dt

=
∫ t+∆t

t

[
−
∑
f

Fφf +
∑
f

(Γφ,d)f Sf • (∇φ)
f

+ (SuVP + SpVPφP )
]
dt, (4.36)

reveals that the temporal discretization can be thought of in two parts:
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1.) approximation of the temporal derivative on the l.h.s. of equation 4.36 in terms
of φP at different time levels as they have been defined above.

2.) approximation of the r.h.s. of equation 4.36 containing all (time-intergrated)
spatial terms.

For convenience and ease of reading this r.h.s. comprising all spatial terms shall
be denoted in a short-hand notation henceforth:

S ≡
∫ t+∆t

t

[
−
∑
f

Fφf +
∑
f

(Γφ,d)f Sf • (∇φ)
f

+ (SuVP + SpVPφP )
]
dt.

(4.37)

ad 1) By expressing φo, that is the first old time level of φ, and φoo, i.e., the second
old time level of φ, as Taylor Series expansion around the new time level n:

φo = φn −
(
∂φ

∂t

)n
∆t+ 1

2

(
∂2(φ)
∂t2

)n

∆t2 +O
(
∆t3

)
and (4.38)

φoo = φn − 2
(
∂φ

∂t

)n
∆t+ 2

(
∂2(φ)
∂t2

)n

∆t2 +O
(
∆t3

)
, (4.39)

and combining them, yields a second order approximation of the desired tem-
poral derivative at the new time level n. For constant ∆t it is:(

∂φ

∂t

)n
=

3
2 φP

n − 2φP o + 1
2φP

oo

∆t
and(

∂ρφ

∂t

)n
=

3
2 ρP

nφP
n − 2ρP oφP o + 1

2ρP
ooφP

oo

∆t
. (4.40)

Alternatively by rearranging equation 4.4 one arrives at a first order approxi-
mation of the temporal derivative at the new time level n:(

∂φ

∂t

)n
= φP

n − φP o

∆t
and(

∂ρφ

∂t

)n
= ρP

nφP
n − ρP oφP o

∆t
. (4.41)

ad 2) It has become customary to neglect the temporal variation of the face values.
This means, that the cell values, the face values are evaluated from for ap-
proximating the spatial terms in S, are considered constant during a time step.
In consequence, either their determination is performed explicitly (exclusively
from the cell values at the old time level), implicitly (exclusively from the cell
values at the new time level) or time-centered (from the cell values at both the
old and the new time levels).
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Underlying a first order approximation of the temporal derivative (equation
4.41 for the l.h.s. of equation 4.36) one refers to the

• Euler explicit method,
if all face values in S are determined from the values at the old time level
to. Moreover, the linear part of the source term is evaluated from the old
time level. Hence:

S = S (to)

⇒
∫ t+∆t

t

∂ρφ

∂t
VP dt = ρP

nφP
n − ρP oφP o

∆t
VP = S (to) . (4.42)

In doing so, φP n at the new time level can be determined directly – i.e.,
without solving for a system of linear equations. However, in order to
ensure stability the solution procedure has to obey the Courant number
limit:

Co ≡ Uf •d
∆t

!
< 1, (4.43)

stating a severe restriction for the choice of the time step size – especially
for steady-state problems, whereas for transient cases time-accuracy (being
actually promoted by the Courant number limit) is of major importance.

• Euler implicit method,
if all face values in S and the linear part in the source term are determined
from the values at the new time level tn:

S = S ( tn)

⇒
∫ t+∆t

t

∂ρφ

∂t
VP dt = ρP

nφP
n − ρP oφP o

∆t
VP = S ( tn) , (4.44)

which yields a system of linear equations. In consequence, the resultant
implicitness causes a stronger coupling within the system and hence re-
moves the Courant number limit, which results in unconditional stability.
Furthermore, this method guarantees boundedness of the solution – pro-
vided that the non-orthogonal correction is treated explicitly.

• time-centered Crank-Nicholson method,
if the face values and the linear part of the source terms are determined
as arithmetic mean from the cell values at both the old and the new time
levels. Hence, centering the spatial terms in time yields:

S = 1
2 [S (to) + S ( tn)]

⇒
∫ t+∆t

t

∂ρφ

∂t
VP dt = ρP

nφP
n − ρP oφP o

∆t
VP = 1

2 [S (to) + S ( tn)] .
(4.45)
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This method is unconditionally stable but generally does not guarantee
boundedness.

Underlying the second order approximation for the temporal derivative (equa-
tion 4.40 for the l.h.s. of equation 4.36) one refers to the

• backward differencing method,
if all face values and the linear part of the source term are evaluated from
cell values at the new time level:

S = S ( tn)

⇒
∫ t+∆t

t

∂ρφ

∂t
VP dt =

3
2 ρP

nφP
n − 2ρP oφP o + 1

2ρP
ooφP

oo

∆t
VP = S ( tn) .

(4.46)

However, again boundedness is not guaranteed.

As shown in [11], both the Euler explicit and the Euler implicit method are of
first order accuracy in time, while the time-centered Crank-Nicholson and the
backward differencing methods are of second order accuracy.

Note in passing, that in order to achieve second order accuracy in time, time-
centering the spatial terms (r.h.s.) can be avoided when choosing a second
order accurate representation of the time derivative (l.h.s.).

4.3.5. Boundary Conditions

Up to now the examination of the discretization practice of the finite volume method
has been restricted to internal mesh faces. Face-centered values have been determined
by use of cell-centered ones obtained from cells pertaining to each side of the face
under consideration. For boundary faces, however, these values have to be evaluated
from the boundary condition.

In general there are two basic types of boundary conditions, namely the Dirichlet
boundary condition (fixed value prescribing the value of φ at the boundary) and the
von Neumann boundary condition (prescribing the gradient of φ at the boundary).

Before expatiating upon the discrete representation of these basic boundary condi-
tions in more detail, it is advisable to first examine the nomenclature associated with
an arbitrary control volume with one boundary face b – as shown in figure 4.7.

As described for the treatment of the non-orthogonality, a distance vector d is
introduced. However, in absence of a neighboring cell, it is redefined to connect
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Figure 4.7: Boundary control volume.

the boundary cell center with the corresponding boundary face center – thus it is
denoted as db. With the vector dn being parallel to the boundary face area vector
Sb, dn ‖ Sb, it is

dn ≡
Sb
|Sb|

db•Sb
|Sb|

. (4.47)

Basic Boundary Conditions

• Dirichlet boundary condition (fixed value)
The value of φ at the boundary is prescribed to be φ = φb. This means for the
convection term if it is discretized involving a boundary face b:∫

VP

∇•ρφU dV =
∑
f

Fφf + Fbφb, (4.48)

where Fb is the prescribed flux across the boundary face. The diffusion term is
discretized as∫

VP

∇•Γφ,d∇φdV =
∑
f

(Γφ,d)f Sf • (∇φ)
f

+ (Γφ,d)b Sb• (∇φ)b . (4.49)

The normal gradient at the boundary face is evaluated as

Sb• (∇φ)b = |Sb,d|
φb − φP
|dn|

+ Sb,∆• (∇φ)P , (4.50)

where the explicit second component is calculated from the cell-centered value
in P instead of the interpolated face gradient.
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• von Neumann boundary condition (fixed gradient)
The normal gradient of φ is prescribed at the boundary face to be Sb• (∇φ)b =
gb. Hence, the convection term reads∫

VP

∇•ρφU dV =
∑
f

Fφf + Fbφb =
∑
f

Fφf + Fb (φP + |dn|gb) , (4.51)

where φb has been evaluated from the normal gradient db at the boundary.
Further, the discretized diffusion term can be calculated directly as

Sb• (∇φ)b = gb (4.52)

4.4. Discretization of Governing Equations

Considering appropriate strategies for discretization and numerical solution of the
governing equations as they are provided in section 3.5, we shall restrict ourself to
those equations describing two-phase flows of segregated flow type. The discretization
of governing equations describing dispersed two-phase flows has been set out in
considerable detail by Weller in [12, 13]. The route followed here is understood
as complementary, in the sense that it provides the details for two-phase flows of
segregated flows in an analogous manner. Eventually this clearly points out the
avenue towards a ’full’ methodology covering both dispersed and segregated two-
phase flow types, which does not impose any additional arduousness with respect to
discretization.

4.4.1. Discetized Interface Transport Equation

Equation Formulation

One critical issue in the numerical treatment of two-phase flow is around phase-
conservation and boundedness of the volumetric phase fraction, since small errors in
the volume fraction correspond to large ones in mass fraction due to a typically high
density ratio.

Therefore, each numerical approach being adopted needs to ensure both phase
conservation and boundedness in the full range of volumetric phase fractions. In
order to arrive at such an approach for the interface transport, we might start from
the volume-averaged interfacial transport equation 3.77, which is repeated here for
convenience:

∂αϕ
∂t

+ ©Uϕ
•∇αϕ = 0.
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From this it is evident that the transport of the volumetric phase fraction αϕ is
non-conservative per se – irrespective of the choice of closure for ©Uϕ

(cf. section
3.4). Thus, it is clear that in order to achieve a more expedient (but equivalent)
form any closed volume-averaged interfacial transport equation (based on 3.77) must
first be rearranged. With the volumetric phase fraction being a conserved quantity,
it is felt that as a guidance the rearrangement should be accomplished such that
an established (conservative) form of governing equations is recovered as much as
possible. This, of course, is expected to hold both conservative and non-conservative
transport terms, however, with the latter being either interpretable on a physical basis
or assessable from modeling assumptions that have been introduced in the course of
model derivation. It is then expected (yet hoped) to establish a form more suitable
for numerical evaluation, i.e., meeting the above requirements of phase conservation
and boundedness.

In order to proceed towards this expedient form, which eventually shall enable to
numerically solve for the transport of αϕ as conserved property, in a first step it is
of use to consider free-surface flows (µϕ � µφ or vice versa), in the limiting case
of which one of the conditional volume-averaged continuity equations in the form of
2.84 are expected to fully govern the transport of the respective volumetric phase
fraction. Rearranging by use of the mixture velocity U ≡ αϕ Uϕ + αφ Uφ and the
phase slip velocity Ur ≡ Uϕ − Uφ, yields

∂αϕ
∂t

+∇•
(
αϕ Uϕ

)
= 0 (4.53)

⇔ ∂αϕ
∂t

+∇• (αϕU) +∇• (αϕαφUr) = 0, (4.54)

and similarly for phase φ,

∂αφ
∂t

+∇•
(
αφ Uφ

)
= 0 (4.55)

⇔ ∂αφ
∂t

+∇• (αφU)−∇• (αφαϕUr) = 0. (4.56)

Note that the two above transport terms on the l.h.s. of equations 4.54 and 4.56 are
conservative – i.e., conservativeness can be guaranteed by discretization employing
the Finite Volume Method as set out before. Furthermore, boundedness is ensured for
the first term, since∇•U != 0 (cf. equation 3.76) as well as for the second term, since it
becomes zero as αϕ → 0 or αϕ → 1. I.e., the natural bounds of the differential forms
according to equations 4.54 and 4.56 are preserved by its discretized counter-parts.

For these reasons and now turning to the general case of a segregated flow (i.e., for
µϕ 6� µφ and µϕ 6� µφ), it appears desirable to first rearrange the corresponding
closed form of equation 3.77 (cf. equation 3.73), aiming at a form as close as possible
to 4.54 for free-surface flows. Then, reassessment of the remaining (non-conservative)
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terms shall be discussed against the background of phase conservation and bound-
edness with the arising additional terms being assigned to the departure from the
limiting case of a segregated free-surface flow governed by equation 4.54. Analogously,
the same procedure might be performed for phase φ aiming at a form close to equation
4.56.

Using equation 3.72 (closure model for ©Uϕ
) and with the volumetric mean (or

mixture) velocity being defined as U ≡ αϕ Uϕ + αφ Uφ and the phase-slip velocity
as Ur ≡ Uϕ− Uφ, the volume-averaged interfacial transport equation becomes (see
corollary note 4.2):

∂αϕ
∂t

+ U•∇αϕ + αφ µ
ϕ − αϕ µφ

µϕ + µφ
Ur•∇αϕ = 0. (4.57)

Corollary Note 4.2

∂αϕ
∂t

+ ©Uϕ
•∇αϕ = 0

⇔∂αϕ
∂t

+ µϕ

µϕ + µφ
Uϕ

•∇αϕ + µφ

µϕ + µφ
Uφ

•∇αϕ = 0.

Moreover, it is

Uϕ = U + αφUr and Uφ = U− αϕUr.

Then,

∂αϕ
∂t

+ µϕ

µϕ + µφ
U•∇αϕ + µφ

µϕ + µφ
U•∇αϕ

+ µϕ

µϕ + µφ
αφUr•∇αϕ −

µφ

µϕ + µφ
αϕUr•∇αϕ = 0

⇒ ∂αϕ
∂t

+ U•∇αϕ + αφ µ
ϕ − αϕ µφ

µϕ + µφ
Ur•∇αϕ = 0.

Equation 4.57 can be rewritten using equation 3.76 (∇•U != 0):

∂αϕ
∂t

+∇• (αϕU) + αφ µ
ϕ − αϕ µφ

µϕ + µφ
Ur•∇αϕ = 0. (4.58)
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While the first transport term on the l.h.s. ensures both phase conservation and
boundedness of the volumetric phase fraction αϕ, the second transport term requires
further examination:

αφ µ
ϕ − αϕ µφ

µϕ + µφ
Ur•∇αϕ

αϕ=1−αφ=
[
αφ −

µφ

µϕ + µφ

]
Ur•∇αϕ (4.59)

αφ=1−αϕ=
[
αϕ −

µϕ

µϕ + µφ

]
Ur•∇αφ. (4.60)

Consequently, the interface transport equations read

∂αϕ
∂t

+∇• (αϕU) + αφUr•∇αϕ −
µφ

µϕ + µφ
Ur•∇αϕ = 0, (4.61)

and similarly for phase φ,

∂αφ
∂t

+∇• (αφU)− αϕUr•∇αφ −
µϕ

µϕ + µφ
Ur•∇αφ = 0. (4.62)

Using the identities Uϕ = U + αφUr and Uφ = U− αϕUr, this eventually expands
to the desired form:

∂αϕ
∂t

+∇• (αϕU) +∇• (αϕαφUr)− αϕ∇•U
ϕ − µφ

µϕ + µφ
Ur•∇αϕ = 0, (4.63)

and for phase φ,

∂αφ
∂t

+∇• (αφU)−∇• (αφαϕUr)− αφ∇•U
φ − µϕ

µϕ + µφ
Ur•∇αφ = 0. (4.64)

As can be seen, the form of the equations 4.54 and 4.56 is recovered – with additional
terms being in non-conservative form. However, recognizing αϕ and αφ as conserved
properties, it is clear that corresponding transport equations should be devoid of any
non-conservative terms. Against this background, we shall disregard these terms for
now, which should be a good approximation at least for free-surface scenarios where
µϕ � µφ (or vice versa).
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Discretization Practice

The discretization practice of the interface transport equations 4.63 and 4.63 is set out
in the following according to the Finite Volume Notation as described on pg. xiii ff.:2

∂[αϕ]
∂t

:
+
1
∇•
(
F [αϕ]

f(F,Γ,0.5)

)9
+
1
∇•
(
Fr,ϕ[αϕ]

f(Fr,ϕ,Γ,0.5)

)9
+
1
∇•
(
Fc,ϕ[αϕ]

f(Fc,ϕ,Γ,0.5)

)9
= 0 (4.65)

2
∂[αφ]
∂t

:
+
1
∇•
(
F [αφ]

f(F,Γ,0.5)

)9
+
1
∇•
(
Fr,φ[αφ]

f(Fr,φ,Γ,0.5)

)9
+
1
∇•
(
Fc,φ[αφ]

f(Fc,φ,Γ,0.5)

)9
= 0, (4.66)

where the phase-relative fluxes read

Fr,ϕ ≡ αφf(−Fr,Γ,0.5)Fr and Fr,φ ≡ −αϕf(Fr,Γ,0.5)Fr (4.67)

with Fr ≡ Fϕ − Fφ,

and the phase compression fluxes have been defined [14] as

Fc,ϕ ≡ αφf(−Fc,Γ,0.5)Fc and Fc,φ ≡ −αϕf(Fc,Γ,0.5)Fc (4.68)

with Fc ≡ min
(
c α|F |,max (|F |)

)(
(∇αϕ)

f

|(∇αϕ)
f
|

)
•

Sf
|Sf |

.

Solving for one volumetric phase fraction, i.e., for one of the above (equivalent)
equations, enables to calculate the complementary phase fraction using the trivial
identity αϕ = 1− αφ.

4.4.2. Discretized Momentum Equation

Equation Formulation

One major difficulty is encountered with numerical two-phase flow simulations, when
solving for equation 3.78 in the α → 0 limit (i.e., αϕ → 0 resp. αφ → 0), where
this equation reduces to the identity 0 = 0. In turn, this renders the evaluation of
the phase velocity Uϕ (or Uφ for equation 3.79), which certainly takes finite values,
rather troublesome.

In general, the issue breaks down to the challenge of specifying the value of a property
which pertains to one phase in regions where it is non-existent and where it is of no
physical significance [15]. This is of no problem for extensive properties as they will
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evaluate to zero anyway. However, intensive flow properties cause problems in the
α→ 0 limit.

One way to alleviate this problem is to rearrange the governing equation at question
in order to achieve a more expedient form. Generally, there are different possibilities
to accomplish this for the momentum equations:

1.) solving for the superficial velocities Us ≡ αϕ Uϕ and Vs ≡ αφ Uφ

These velocities are well-defined in the entire domain, approaching zero where
α → 0. However, as the face flux would be defined as Sf • (Us/αϕ)

f
, a model

would become necessary in order to evaluate the face flux in this limit.

2.) solving for the volumetric mixture velocity U ≡ αϕ Uϕ + αφ Uφ and a relative
or slip velocity Ur ≡ Uφ − Uϕ

This approach is advantageous, since the mixture velocity U is well-defined
in the entire domain and, moreover, clearly related to the mean pressure in
the system. Moreover, interfacial momentum exchange, being significantly
governed by interfacial slip, could be treated implicit in crucial parts. However,
this approach has not yet been developed to a more evolved state.

3.) solving for phase-intensive forms of the momentum equations
In contrast to the two approaches above, this route is based upon the elimina-
tion of αϕ resp. αφ from the momentum equations as much as possible. Thus,
this represents a significant departure from the previous methodologies. The
merit of this route mainly lies in the concentration of the dependency from the
volumetric phase fraction αϕ into a few terms that can be dealt with in an
appropriate manner.

The third approach has proven advantageous [12, 15] and thus shall be set out in
more detail in the remainder.

Derivation of the phase-intensive momentum equations We might start from
the known non-intensive form as given by equation 3.78 and repeated here for
convenience:

∂αϕ Uϕ

∂t
+∇•

(
αϕ Uϕ Uϕ

)
=− αϕ∇ pϕ

ρϕ
− ∇• (αϕ τϕ)

ρϕ
+ αϕg + Mϕ

ρϕ
, (4.69)

Considering the l.h.s. of this equation, factoring out αϕ yields:

∂αϕ Uϕ

∂t
+∇•

(
αϕ Uϕ Uϕ

)
=αϕ

[
∂Uϕ

∂t
+ Uϕ

•∇Uϕ

]

+ Uϕ∂αϕ
∂t

+ Uϕ Uϕ
•∇αϕ.

(4.70)
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From this, it is

∂αϕ Uϕ

∂t
+∇•

(
αϕ Uϕ Uϕ

)
=αϕ

[
∂Uϕ

∂t
+ Uϕ

•∇Uϕ

]

+ Uϕ
[
∂αϕ
∂t

+ Uϕ
•∇αϕ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

]
, (4.71)

where the last term on the r.h.s. can be set to zero, as can be seen from equation
3.75 (which is inherently presumed to be valid here).

Hence, the phase-intensive momentum equation reads in its final form

∂Uϕ

∂t
+ Uϕ

•∇Uϕ = − 1
ρϕ
∇ pϕ − 1

αϕ

[ 1
ρϕ
∇• (αϕ τϕ)

]
+ g + Mϕ

αϕ ρϕ
. (4.72)

Decomposition of the shear stress tensor The term in the squared brackets on
the r.h.s. of equation 4.72 potentially causes trouble in the α→ 0 limit and therefore
needs further examination. This shall be described in the following first for the bulk
and then for the interfacial contribution (cf. equation 3.66):

∇• (αϕ τϕ)
αϕ ρϕ

= ∇• (αϕ τϕ)
αϕ ρϕ

∣∣∣∣∣
eff,b

+ ∇• (αϕ τϕ)
αϕ ρϕ

∣∣∣∣∣
eff,i

. (4.73)

bulk part of shear stress tensor For the numerical implementation of the bulk part
of the shear stress tensor in the phase-intensive momentum equations it is
advantageous to consider a decomposition of the shear stress tensor into a
diffusive component (implicit treatment) and a correction (explicit treatment).
In doing so, the dependency from the volumetric phase fraction αϕ, can be
grouped, which in effect produces two terms:

∇• (αϕ τϕ)
αϕ ρϕ

∣∣∣∣∣
eff,b

= 1
ρϕ
∇• τϕ + τϕ

ρϕ
•
∇αϕ
αϕ

. (4.74)

Then, considering the decomposition for the bulks of Newtonian fluids

τϕ = τϕ,D + τϕ,C

with τϕ,D ≡ −µϕ∇Uϕ and τϕ,C ≡ −µϕ
(
∇Uϕ

)T
, (4.75)

it follows with the effective bulk viscosity νeff,bϕ ≡ µϕ

ρϕ for the first addend on the
r.h.s. of equation 4.74

∇• τ
ϕ,D

ρϕ
= −∇•

(
νeff,bϕ ∇Uϕ

)
(4.76)
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and

∇• τ
ϕ,C

ρϕ
= ∇•

(
−νeff,bϕ

(
∇Uϕ

)T)
. (4.77)

Furthermore, after the above decomposition the second addend on the r.h.s. of
equation 4.74 can be written as

τϕ,D

ρϕ
•
∇αϕ
αϕ

= ∇•
(
−νeff,bϕ

∇αϕ
αϕ

Uϕ

)
− Uϕ

(
∇•
(
−νeff,bϕ

∇αϕ
αϕ

))
(4.78)

and a rest

τϕ,C

ρϕ
•
∇αϕ
αϕ

. (4.79)

interfacial part of shear stress tensor It is clear from inspection that αϕ in the inter-
facial part of shear stress tensor, i.e., in

∇• (αϕ τϕ)
αϕ ρϕ

∣∣∣∣∣
eff,i

= 1
αϕ ρϕ

∇•
[
− µϕ µφ

µϕ + µφ

((
Uϕ − Uφ

)
∇αϕ

+∇αϕ
(

Uϕ − Uφ
)) ]

, (4.80)

can not be easily isolated as for its bulk counter-part. Due to non-commutativity
the first addend needs to be handled ’as-is’ (explicit treatment):

1
αϕ
∇•
(
−νeff,iϕ

(
Uϕ − Uφ

)
∇αϕ

)
, (4.81)

where the effective interfacial viscosity has been defined as νeff,iϕ ≡ 1
ρϕ

µϕ µφ

µϕ+µφ
.

However, the second addend in equation 4.80 might be split up for semi-implicit
treatment:

1
αϕ
∇•
(
−νeff,iϕ ∇αϕ Uϕ

)
− 1
αϕ
∇•
(
−νeff,iϕ ∇αϕ Uφ

)
. (4.82)

Eventually, the implemented momentum conservation equation becomes in its final
phase-intensive form:

∂Uϕ

∂t
+ Uϕ

•∇Uϕ + ∇• τ
ϕ

ρϕ

∣∣∣∣
eff,b

+ τϕ

ρϕ
•
∇αϕ
αϕ

∣∣∣∣∣
eff,b

+ ∇• (αϕ τϕ)
αϕ ρϕ

∣∣∣∣∣
eff,i

=− 1
ρϕ
∇ p + g + Mϕ

αϕ ρϕ
, (4.83)

where additionally the single-field assumption has been adopted. Consequently,
the (mixture) pressure p = pϕ = pφ, being shared by both phases, is utilized.

121



4. Numerical Method

The adoption of a single-field pressure is a useful assumption being made by most
researchers in the field. Alternatively, the coupled solution of two pressure equations
(one for each phase), which are elliptic in nature, would become necessary. On the
other side, the solution of a system with a mixture pressure driving both phases is
potentially violating continuity, because a single pressure could force both the phases
to leave a cell [15]. However, since for incompressible flows the overall continuity
is to be ensured for the mixture (cp. equation 3.76), the mixture pressure has to
be determined in such a way that the continuity of the volumetric mixture flux
is guaranteed (cf. section 4.5), in which case its use is justified. Moreover, for a
sharp interface representation there is also evidence of a physical substantiation of a
mixture pressure (cf. section 3.5, p. 88). In effect however, the number of variables
has been reduced by one by adopting this mixture assumption. In consequence, one
governing equation – usually the interface transport equation – is obsolete and can
be disregarded [12]. Hence, the volumetric phase distribution is commonly obtained
from the mass conservation according to equation 2.84. The justification of this
practice has been issued in section 4.4.1.

Discretization Practice

The second term on the l.h.s. of equation 4.83 has rendered the phase-intensive form
of the momentum equation non-conservative. However, the dependency from the
volumetric phase fraction αϕ advantageously has been grouped in two kind of terms
– shear stress contributions on the l.h.s. and momenta exchange terms on the r.h.s.
– which needs to be examined further in the α→ 0 limit:

• shear stress terms on the l.h.s. being ∼ ∇αϕ/αϕ
Terms containing ∇αϕ/αϕ do not necessarily become infinite in the limit where
the volumetric phase fraction approaches zero, αϕ → 0 [12, p. 12]. However,
the numerical evaluation of such terms proves demanding: the central issue can
be addressed considering the situation where the cell-centered value of αϕ is
zero, while adjacent values in neighboring cells are not. Obviously, in such cases
∇αϕ/αϕ can not be evaluated by simply dividing by the cell-centered values of
αϕ, but the evaluation needs stabilization. This can be accomplished by first
averaging the denominator over the computational molecule of the ∇ operator,
and secondly by adding a small stabilizing factor δ to it resulting in

∇αϕ
αϕ

→ ∇αϕ
〈αϕ〉∇ + δ

, (4.84)

which can be treated explicitly in a stable manner.

• momentum exchange terms on the r.h.s. containing αϕ
Momenta exchange terms Mϕ on the r.h.s. , i.e., interfacial pressure and
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unbalanced shear stress contributions, are found to contain either αϕ or ∇αϕ
(resp. |∇αϕ|), or both. In the first and last case a division by the volumetric
phase fraction αϕ in the αϕ → 0 limit is not particularly worrisome, whereas in
the middle case again stabilization is required, i.e., any 1/αϕ is stabilized using
δ:

1
αϕ

→ 1
αϕ + δ

. (4.85)

Moreover, it is important for two-phase systems to recognize these momenta
exchange terms and additionally all body force terms (as the buoyancy term,
for instance) as quite sensitive and possibly troublesome, since they might
contribute to discontinuities in both the pressure and the pressure gradient
field. In such cases, when using a pseudo-staggered, i.e., collocated cell-centered
variable arrangement and associated interpolation practice for pressure-velocity
coupling (cf. section 4.5), continuity errors occur and consequently cause an un-
physical behavior of the solution [16]. This is always the case if the pressure field
is not ensured to be sufficiently smooth, for instance, if the pressure gradient
needs to balance strongly varying force densities. Hence, as a remedy, these
terms will be treated appropriately along with the pressure-velocity coupling
in the algorithm (cf. section 4.5) – in the spirit of Rhie-Chow.

Summarizing, all stress terms, the pressure gradient and buoyancy terms are treated
explicitly. Convection and diffusion terms as well as the time derivative are handled
implicitly according to the discretization practice that has been set out in the previous
sections.

Consequently, the discretization of the momentum equation 4.83 can be presented
according to the Finite Volume Notation as described on pg. xiii ff., stating a semi-
implicit decoupled discretization practice:

2
∂[ Uϕ]
∂t

:
+
1
∇•
(
FT
ϕ [ Uϕ]

f(FT
ϕ ,S,γ)

)9
−
1
∇•
(
FT
ϕ

)
[ Uϕ]

9
−
1
∇•
(
νeff,bϕ ∇[ Uϕ]

)9
+ ∇• τ

ϕ,C

ρϕ
+ ∇αϕ
〈αϕ〉∇ + δ

•
τϕ,C

ρϕ
+ 1
〈αϕ〉∇ + δ

(
− νeff,iϕ

( (
Uϕ − Uφ

)
∇αϕ −∇αϕ Uφ

))
+
1
∇•
(
−νeff,iϕ Sf∇⊥f αϕ

)
[ Uϕ]

9
= −∇ p

ρϕ
+ g−

2
αφ
ρϕ
Ad
[
Uϕ
]:

+ αφ
ρϕ

(
Ad Uφ

)
(4.86)
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and3
∂[ Uφ]
∂t

;
+
2
∇•
(
FT
φ [ Uφ]

f(FT
φ
,S,γ)

):
−
1
∇•
(
FT
φ

)
[ Uφ]

9
−
1
∇•
(
νeff,bφ ∇[ Uφ]

)9

+ ∇• τ
φ,C

ρφ
+ ∇αφ
〈αφ〉∇ + δ

•
τφ,C

ρφ
+ 1
〈αφ〉∇ + δ

(
− νeff,iφ

( (
Uφ − Uϕ

)
∇αφ −∇αφ Uϕ

))
+
1
∇•
(
−νeff,iφ Sf∇⊥f αφ

)
[ Uφ]

9
= −∇ p

ρφ
+ g−

2
αϕ
ρφ
Ad
[
Uφ
]:

+ αϕ
ρφ

(
Ad Uϕ

)
.

(4.87)

4.5. Solution Method and Algorithm

4.5.1. Solution Method – Linear Algebraic Equation System

Assembling the terms from the finite volume discretization method yields one alge-
braic equation for each computational cell and each quantity φ under consideration:

aPφP +
∑
N

aNφN = rP , (4.88)

where r denotes the source term.

Note that the equations might be linear or non-linear dependent on the nature of
the physical problem stating the subject of interest. However, the latter group needs
first to be linearized in some manner before treating it as linear algebraic equation
system.

According to the underlying methods, that have been chosen for time integration,
the solution procedure for the algebraic equations is either explicit or implicit:

1.) explicit method
If φP n, i.e., the new value of φP , solely depends on the old neighbor values φNo,
φP

n can be evaluated directly by ’visiting’ each cell and using the available
value φNo to calculate

φP
n =

rP −
∑
N
aNφN

o

aP
, (4.89)

without any additional information needed. As intimated before, despite being
fast and efficient, this method poses the Courant number limitation to the
solution method, that is the information about the boundary conditions is only
allowed to propagate slowly imposing a limit on the time-step size.
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2.) implicit method
If the new value φP n depends on the new neighbor values φN n, it is

φP
n =

rP −
∑
N
aN φN

n

aP
. (4.90)

As can be seen, each new value of φP n depends on the new values φN n in the
neighboring cells – resulting in a system of linear algebraic equations.

This system of linear algebraic equations can be rewritten in a generic matrix
form as

{A} [φ] = [r] , (4.91)

where {A} is a square matrix holding the coefficient aP on its diagonal and aN
off its diagonal. Thus, {A} is said to be a spare matrix, i.e., most of its matrix
coefficients equal zero. [φ] and [r] are column vectors holding the dependent
variable and source terms, respectively. Thus every row represents one algebraic
equation for each control volume of the spatial solution domain.

In the following, we shall further examine the implicit method on a term-by-
term basis. Beforehand, it is advisable to introduce two important measures in
matrix analysis and linear algebra; that is the diagonal equality and diagonal
dominance of matrix {A}, being governed by the discretized terms as set out
in the previous sections. These measures are closely linked to the issue of
boundedness and convergence, when solving for the corresponding system of
linear algebraic equations using iterative solvers.

• The matrix {A} is said to be diagonal equal if the magnitude of the diagonal
coefficient for each row equals the sum of magnitudes of off-diagonal coefficients:

|aii| =
N∑
j=1
|aij |; j 6= i ⇒ |aP | =

∑
N

|aN |. (4.92)

• The matrix {A} is diagonal dominant if the sum of magnitudes of off-diagonal
coefficients in each row is equal or smaller than the magnitude of the diagonal
coefficient:

|aii| ≥
N∑
j=1
|aij |; j 6= i ⇒ |aP | ≥

∑
N

|aN |, (4.93)

and at least for one row:

|aii| >
N∑
j=1
|aij |; j 6= i ⇒ |aP | >

∑
N

|aN |, (4.94)
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Table 4.1: Matrix contributions of discretized terms (exemplary).

type of
term

contribution to matrix

diagonal off-diagonal source

temporal aP = ρP
n

∆t
VP — rP = ρP

oφP
o

∆t
VP

convective aP = fxF aN = (1− fx)F —

diffusive aP = − (Γφ,d)f
|Sf |
|d|

aN = − (Γφ,d)f
|Sf |
|d|

—

source

aP ={
SpVP if SP < 0
0 if SP ≥ 0

(implicit treatment)

—

rP = SuVP +{
0 if SP < 0
SpVPφP

o if SP ≥ 0

(explicit treatment)

The convergence of iterative solvers is significantly promoted with increasing diagonal
dominance of the matrix {A}.

Generally, every discretized term constituting the discretized form of a governing
equation under consideration contributes to the matrix coefficients of {A} and/or
the source vector [r], and thus will bias the system’s properties:

temporal term The discretization of the temporal term solely produces a contribution
to the diagonal coefficient and the source term, since ∂φ

∂t in a cell P only depends
on φP – see table 4.1. As can be seen, the diagonal dominance is strengthened
with an decrease in the time step size ∆t.

convection term Within the discretized convection term, φf depends on the values in
both P and N . In general this creates an asymmetric matrix contribution
with off-diagonal coefficients. E.g., the case of central differencing creates
the matrix contributions as provided in table 4.1. Note that this does not
generally guarantee boundedness. A diagonally equal matrix contribution is
only produced by use of upwind differencing. For some other schemes a source
contribution (due to gradient-based correction terms) needs to be added.

diffusion term The discretized diffusion term causes a diagonally equal and sym-
metric matrix contribution – ensuring boundedness on orthogonal meshes. For
an orthogonal mesh the corresponding matrix contributions read as provided in
table 4.1. On non-orthogonal meshes this only holds for explicit non-orthogonal
correction (whose contribution is going into the source). Implicit treatment of
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the non-orthogonal correction would introduce negative matrix coefficients from
the ’second neighbors’ violating diagonal equality.

source term Source and sink terms do not depend on values from neighboring cells.
Thus, they solely contribute to the diagonal coefficients of the matrix and the
source: The coefficient SuVP is added directly to the source, while handling
of the linear part of the source term is case-dependent (implicit vs. explicit
treatment) – see table 4.1. By this practice the diagonal dominance of the
matrix is purposively increased.

In order to solve for the system of linear algebraic equations within the framework of
this study, the Conjugate Gradient (CG) method, originally proposed by Henstens
and Steifel [17] is utilized. The convergence rate is further enhanced by use of pre-
conditioning: for symmetric matrices the Incomplete Cholesky Conjugate Gradient
(ICCG) method is employed [18], while the Bi-Conjugate Gradient STABilized (Bi-
CGSTAB) method is adopted for assymmetric matrices [19]. Moreover, beside CG
solvers, also the Algebraic Multi-Grid (AMG) method according to [20] is utilized in
this study.

4.5.2. Algorithm

As has been already set out, the ’core-level’ procedure comprises of an implicit
iterative solution method being based upon an arbitrary finite volume discretization
technique. However, the ’top-level’, i.e., the algorithm, is supposed to treat the
systems1 of linear equations adopting the segregated approach, that is to solve each
system separately – generally handling potential coupling between the equations
explicitly.

Hence, the purpose of the algorithm is to appropriately maintain the coupling between
all governing equations and to impose any continuity and boundedness constraints
on the system as a whole [21]. For two-phase systems – stating the subject of the
present work – the algorithm structure is determined by two aspects requiring special
attention concerning coupling between

1.) the phase momenta and the pressure (pressure-velocity coupling),
2.) the phase momenta themselves (interfacial momentum exchange).

The first issue shall be approached employing the Pressure Implicit with Splitting of
Operators (PISO) algorithm by Issa [22], whereas for the second issue a semi-implicit
approach has been adopted. Both aspects govern the final algorithm structure and
shall be set out in detail in the remainder of this section.

1 for several dependent variables
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Pressure-velocity Coupling – PISO algorithm

PISO is a segregated approach that allows to solve for the Navier-Stokes equations
in which pressure and velocity are treated sequentially using a predictor-corrector
procedure. In doing so, this method couples the pressure with the velocity through
flux conservation2.

Hence, conservative fluxes are related to the pressure gradient using an interpolation
practice in the spirit of Rhie-Chow [23]. The Rhie-Chow interpolation is absolutely
necessary when dealing with pressure-velocity coupling along with a colocated vari-
able arrangement on an arbitrary polyhedral mesh – as it is a common requirement in
nowadays CFD codes. This interpolation practice has removed the issue of pressure-
velocity decoupling (so-called checkerboarding), which arises if the pressure gradient
does not exhibit a compact support and thus does not depend on the pressure in
adjacent cells allowing for a jigsaw pressure pattern (’checkerboard’).

However, the original concept of Rhie-Chow, that is the explicit correction of the cell
face velocities,

Uf = fxUP + (1− fx) UN +
( 1
A

)
f

[
n̂• (∇p)

f
− pN − pP

|d|

]
(4.95)

with d ‖ n̂,

is adapted herein to an interpolation practice best described to be in the spririt of
Rhie-Chow, which is set out in detail below.

Before expatiating on a more detailed description of the PISO algorithm, it is
important to recognize the underlying assumptions for which its adoption is justified.
The coupling characteristics of a incompressible flow system encompasses

• linear pressure-velocity coupling and
• non-linear U-U coupling in the convection term of the momentum equation.

It is well known that the PISO algorithm relies on the crucial assumption that
the pressure-velocity coupling is much stronger than the non-linear coupling in the
momentum convection term. However, this is only valid if the non-linearity can be
assumed to vary slowly, which is given for a time-accurate solution employing small
time-steps. Throughout this work, this assumption is considered to be valid. Thus,
the lagged velocity Uo (within the linearized momentum convection term∇• (UnUo))
remains frozen and without any update during the pressure corrections performed
within the PISO algorithm.
2 A flux is said to be conservative, if it obeys continuity, i.e., for incompressible flows ∇•U != 0⇒∑

f
F

!= 0.

128



4.5. Solution Method and Algorithm

Derivation of the Pressure Equation For the purpose of derivation, the discretiza-
tion of the momentum equation has to be considered (adopting the techniques as they
were described before). By preserving the pressure gradient term in its differential
form, this results in the semi-discretized form of the momentum equation:

aUPUP +
∑
N

aUNUN = r−∇p. (4.96)

For simplicity, we might now introduce the H [U] and the A [U] operator. The H [U]
operator holds the off-diagonal part of the momentum matrix and the source part,
except the pressure gradient, while the A [U] operator issues the diagonal coefficients
of the momentum matrix:

H [U] ≡ r−
∑
N

aUNUN and (4.97)

A [U] ≡ aUP , (4.98)

For readability, [U] shall be dropped henceforth. If not stated otherwise, both the
H and A operator are applied on the momentum equation. With 4.97 and 4.98,
equation 4.96 can be rewritten as

AUP = H−∇p, (4.99)

which can be used to express the velocity UP :

UP = H
A
− ∇p
A
. (4.100)

Substituting into the continuity equation for incompressible flow (∇•U != 0), yields

∇•
(∇p
A

)
!= ∇•

(H
A

)
or (4.101)∫

VP

∇•U dV ≈
∑
f

Sf •Uf

!= 0 ⇒
∑
f

Sf •
[( 1
A

)
f

(∇p)
f

]
!=
∑
f

Sf •
(H
A

)
f

.

(4.102)

Steps of the PISO Algorithm (single-phase system) Bearing in mind the pres-
sure equation 4.102, it is now possible to summarize the particular steps of the PISO
algorithm. The following description corresponds to the steps performed at each
time-step:

momentum predictor step The first step of the PISO algorithm is the momentum
predictor step. This comprises the discretization and solution of the momen-
tum equation using the available pressure field and conservative fluxes from
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the previous corrector step (p∗ and F ∗) or the old time step (po and F o),
respectively.

A∗UP
∗ = H∗ −∇p∗. (4.103)

Next, the off-diagonal components H are assembled. On this basis, the veloc-
ity field is updated to yield an approximative velocity field – neglecting the
influence of the pressure:

UP
∗ = H∗

A∗
(4.104)

By underlying the guessed pressure p∗, the new velocity field in general does not
satisfy the continuity condition – i.e., the velocity field UP

∗ is not divergence-
free.

pressure correction step Calculating the interpolated face fluxes (flux predictor) from
the approximative velocity field according to equation 4.104,

F ∗ = Sf • (UP
∗)
f
, (4.105)

enables to calculate the pressure equation (compare to equation 4.102):

∑
f

Sf •
[( 1
A∗

)
f

(∇p)
f

]
!=
∑
f

F ∗. (4.106)

Note that the r.h.s. of equation 4.106 is treated explicitly, when the pressure
equation is formed and solved. This results in a new pressure field p∗∗.

assembly of conservative fluxes This step comprises the creation of the flux from the
solution of the pressure equation:

F ∗∗ = F ∗ − 1
(A∗)

f

∇⊥f p∗∗ (4.107)

Note that in order to arrive at conservative fluxes the assembly of the flux must
be completely consistent with that of the pressure equation3. E.g., the last term
of the r.h.s. of equation 4.107 for the flux appears when discretizing the l.h.s.
of the pressure equation 4.106 and reads for othogonal meshes:( 1

A∗
)
f

Sf • (∇p)
f

=
( 1
A∗

)
f

|Sf |
|d| (pN − pP ) . (4.108)

Note that the pressure laplacian-term is calculated by use of Gauss’ theorem.
Thus, the calculation comprises the evaluation of the face-normal pressure
gradient in terms of cell-centered pressure values.

3 including non-orthogonal correction when discretizing the pressure laplacian, i.e., the l.h.s. of the
pressure equation 4.106
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explicit velocity correction Next an explicit velocity correction is performed, in which
the new velocities are obtained from the approximative velocity field UP

∗ using
the corrected pressure gradient ∇p∗∗:

UP
∗∗ = UP

∗ − ∇p
∗∗

A∗
. (4.109)

Note that the gradient calculation is accomplished using Gauss’ theorem. Thus,
only face-interpolated pressure values are necessary.

Comparing the r.h.s. ’s of the equations 4.100 and 4.104 reveals, that up to now it has
been inherently assumed that the entire velocity error stems from the pressure term.
However, as the r.h.s. of equation 4.104 (as it is assembled) yields the approximative
velocity field UP

∗, which does not obey continuity, this assumption is not true and
another iteration is to be established beginning from the pressure correction step
until a pre-set tolerance is met.

Summarizing, the PISO algorithm along with the interpolation practice according to
Rhie and Chow is characterized by:

1.) an approximative velocity field UP
∗, which does not obey continuity and does

not involve any pressure contribution. This approximative velocity field is
considered constant during the pressure calculation.

2.) the conservative fluxes and the pressure gradient, being related to each other.
In doing so, the continuity equation has effectively been transformed into a
Poisson equation for pressure. The solution of this elliptic equation results in
a new pressure field, that can be used as initial guess for subsequent steps.

Steps of the PISO Algorithm (two-phase system) Essentially, the PISO solution
procedure follows the above steps also for the two-fluid methodology. However, spe-
cial attention needs to be paid to the so-called Rhie-Chow error, that manifests itself
in a continuity error due to the Rhie-Chow interpolation practice, which imperatively
needs to be minimized in order to ensure stability of the numerical solution procedure.
Otherwise this error causes unphysical behavior of the solution, i.e., oscillations of the
pressure field, spurious currents etc. It can be shown [16] that the Rhie-Chow error
is small provided that the pressure field is sufficiently smooth – i.e., in the absence
of discontinuities in both the pressure and the pressure gradient.

Hence, an enhanced Rhie-Chow treatment becomes necessary. E.g., we might want
to exclude those force densities already from the momentum predictor, that strongly
vary or are subject to abrupt changes, as these body forces necessarily would have
to be balanced by the pressure gradient. Thus, discontinuous body forces are to be
treated on the cell faces and reintroduced again when explicitly reconstructing the
cell-centered velocities. In doing so, the pressure gradient ∇p is effectively replaced
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by a smooth substitute ∇̃p in the pressure equation. This practice can be described
best exemplary examining the buoyancy force, which for buoyant two-phase scenarios
of segregated type would have to be balanced by the pressure gradient in the absence
of flow and interfacial curvature:

∇ p
ρϕ

= g. (4.110)

Eliminating the hydrostatic pressure ρg•x from the mixture pressure p yields a
modified pressure pd, which exhibits a smooth gradient across the interface. Hence,
the l.h.s. of equation 4.110 can be re-formulated as

∇ p
ρϕ

= ∇pd
ρϕ

+ 1
ρϕ

(ρg + g•x∇ρ)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=∇(ρg•x)

. (4.111)

Substituting equation 4.111 into the momentum equation results in the following
pressure and buoyancy terms on its r.h.s. :

−∇pd
ρϕ

+
(

1− ρ

ρϕ

)
g− g•x

ρϕ
∇ρ. (4.112)

Summarizing, the steps of the PISO algorithm for the two-fluid methodology read:

momentum predictor step The phase momentum predictor step comprises the decom-
position of the equation system into A- and H-parts, respectively. However,
the buoyancy term, the explicit part of the drag term and force densities
being proportional to the gradient of the volumetric phase fraction have been
excluded.

The approximative phase velocities read4

Uϕ ∗ = Hϕ
∗

Aϕ ∗
and Uφ ∗ = Hφ

∗

Aφ ∗
(4.113)

pressure correction step The approximative fluxes (flux predictor) are obtained from
the approximative velocities using central differencing:

Fϕ
∗ = Sf •

(
Uϕ ∗)

f
+
(

Aϕ,h
αϕ ρϕAϕ

)
f

Fφ

+
(

1− ρ/ ρϕ
Aϕ

)
f

Sf •g−
(

1
Aϕ

)
f

(g•x)
f
|Sf |∇⊥f ρ

+
(

1
ρϕAϕ

)
f

(
Aϕ,p
αϕ

)
f

|Sf |∇⊥f αϕ +
(

1
ρϕAϕ

)
f

(
Aϕ,σ
αϕ

)
f

|Sf |∇⊥f αϕ,

(4.114)
4 Note that P as a subscript has been dropped for readability.
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where Aϕ,h, Aϕ,p and Aϕ,σ are multipliers being defined as provided by table
3.2. Consequently, it is for phase φ:

Fφ
∗ = Sf •

(
Uφ ∗)

f
+
(

Aφ,h
αφ ρφAφ

)
f

Fϕ

+
(

1− ρ/ ρφ
Aφ

)
f

Sf •g−
(

1
Aφ

)
f

(g•x)
f
|Sf |∇⊥f ρ

+
(

1
ρφAφ

)
f

(
Aφ,p
αφ

)
f

|Sf |∇⊥f αφ +
(

1
ρφAφ

)
f

(
Aφ,σ
αφ

)
f

|Sf |∇⊥f αφ.

(4.115)

The total volumetric face flux is expressed straightforward as

F ∗ =
∑
k=ϕ,φ

αk,f Fk
∗ (4.116)

Since the single-field assumption has been adopted, we solve for one (mixture)
pressure that is shared by both phases. Thus, the pressure equation as a recast
of the continuity equation reads

∑
f

Sf •

 ∑
k=ϕ,φ

αk,f

( 1
ρkAk

)
f

 (∇p)
f

 =
∑
f

F ∗. (4.117)

assembly of conservative fluxes The volumetric face fluxes are updated underlying
the solution of the pressure equation:

Fϕ
∗∗ = Fϕ

∗ −
1

ρϕ(Aϕ)f∑
k=ϕ,φ

αk,f
ρk(Ak)f

|Sf |∇⊥f p∗∗

Fφ
∗∗ = Fφ

∗ −

1
ρφ(Aφ)f∑

k=ϕ,φ
αk,f

ρk(Ak)f

|Sf |∇⊥f p∗∗. (4.118)

Next, the conservative total volumetric face flux is calculated as

F ∗∗ =
∑
k=ϕ,φ

αk,f Fk
∗∗. (4.119)

explicit velocity correction The phase velocities Uϕ and Uφ are obtained from the
conservative volumetric phase fluxes using an explicit reconstruction procedure
that is based on least-square evaluation. For consistency, all contributions that
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have been considered critical and thus have been excluded from the Rhie-Chow
formula are taken into account in this step.

Eventually, the volumetric mixture velocity is evaluated:

U = αϕ Uϕ + αφ Uφ
. (4.120)
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5
Numerical Simulation of dispersed
Gas-Liquid Flows in Bubble Columns at
high Gas Phase Fractions using
OpenFOAM® – Part I: Modeling Basics

Abstract

Various chemical products are synthesized in processes using gas/liquid reactors with
bubbly flows. Hence, there is a significant interest in a more efficient process design as
well as in process intensification with a strong focus on this reactor class. However, the
design of industrial gas/liquid reactors requires more detailed information about the
flow structures and characteristics of two- or multiphase systems. The basic models for
two-fluid model simulations of dispersed gas/liquid flows in bubble columns at high gas
fractions are presented.
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5.1. Introduction

Computational Fluid Dynamics (CFD) provides an efficient way to examine fluid
dynamic phenomena within the interior of chemical reactors on the basis of numerical
simulations. This virtual prototyping (virtual numerical experiments) aims at both
the clarification of physical interrelations and the reliable and efficient prediction of
complex flow phenomena in multiphase systems, as they are found in process and
chemical engineering apparatus.

Crucial parameters for process design – concerning both fluid dynamics and reaction
engineering aspects of bubble column operation – are found to be the interfacial area
density as well as the velocities, flow patterns and mixing characteristics evolving in
the interior of the reactor [1–3].

Considering its basic cylindrical geometry, the design of a bubble column reactor is
certainly a simple one. For the ease of phase separation, the design of the column
features a widened cross-section in the upper part. However, albeit the design appears
to be simple, the two-phase flow within the interior of bubble columns turns out to be
very complex: the phase velocities, volumetric phase fractions, turbulence properties
and the flow structure (topology) are characterized by both spatial and temporal
scales that inherently differ by orders of magnitude. This depends on the particular
operation mode (co-current vs. counter-current flow and superficial gas velocity) and
design (gas sparger and aspect ratio) of the column.

5.1.1. State-of-the-Art

Flow Regimes in Bubble Columns

For a fixed geometry (aspect ratio), the flow regime in bubble columns is basically
determined by the superficial gas velocity. In general, there are three regimes to be
distinguished [4]:

homogeneous flow regime At low superficial gas velocities the flow within bubble
columns is characterized by an approximately uniform bubble distribution. The
bubble swarm moves upwards through the liquid with a constant rising velocity.
The bubble size distribution is found to be narrow and monomodal. It solely
depends on the choice of the gas sparger. Any interactions between bubbles
such as coalescence and break-up are negligible.

heterogeneous flow regime Transition into the heterogeneous flow regime occurs when
increasing the superficial gas velocity [5]. This regime is characterized by
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angular motion
of bubble swarm

vortical liquid
flow region

helical-rising
bubble flow

descending
flow region

Figure 5.1: Characteristic flow pattern in a bubble column.

bubbles of quite different size and form, high gas-fractions and interactions
between bubbles and vortical liquid flow regions [6].

slug flow regime At high superficial gas velocities and for high column aspect ratios
the slug flow regime is observed. This regime possesses large gas compartments,
i.e., large bubbles rising intermittently through the column while spanning
its entire cross-section. For this reason, the slug flow regime is an undesired
operation mode, being usually omitted in practice. The liquid-rich regions in
between large bubbles, which are commonly entitled liquid slugs, are rising
through the column at high velocities as well.

Figure 5.1 shows a typical flow pattern in bubble columns during operation within
the heterogeneous flow regime [3, 7, 8]: a swarm of large bubbles rises along helical
trajectories around the center line of the column. Vortical flow structures are observed
in regions between the centrally rising swarm and the wall of the column. These
vortical structures are found to entrain small bubbles, hindering their rise to some
extent. On the other side, the liquid phase flows downwards near the wall. This is
owed to continuity, as large bubbles generally entrain parts of the liquid phase near
the center line of the column; these parts in turn need to be passed downwards again.
Hence, a large-scale flow pattern within the liquid phase is observed which is owed
to the requirement of continuity, while the dispersed gas phase largely rises along
helical trajectories within a central bubble plume [9,10].
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Important aspects of process design are the interfacial area density available for
species and mass transfer and the mixing of the liquid phase.

Usually dispersion is defined as a stochastic mixing process, which causes gradients
of intensive quantities (such as concentration and temperature) to decrease [9]. In
general, the dispersion within one phase is inherently influenced by the presence
of the second phase within a two-phase bubbly flow. Moreover, both macroscopic
(channel formations, dead zones, large flow patterns) and microscopic (turbulent
fluctuation within the liquid phase) effects affect dispersion [3]. However, despite
of this complex interplay in bubble columns, that is already observed for only two
phases, the axial back-mixing as a prevalent design parameter can be characterized
by the axial dispersion coefficient for the liquid phase. This coefficient can even be
correlated with basic data of operation: the diameter of the column, the gas hold-up,
the superficial gas velocity and the mean rise velocity of the gaseous phase [11].

Numerical Simulation of the Flow in Bubble Columns

There are various CFD approaches to describe two-phase flows. However, these differ
as to both their spatial resolution and their applicability when facing cases of practical
interest.

Basically, one can distinguish between two CFD approaches that adequately cap-
ture the flow in bubble columns [12–14]: the two-fluid model [15] (often also
called Eulerian-Eulerian method) and particle-based methods (often called Eulerian-
Lagrangian methods). Both approaches yield the same result – given that a sufficient
discretization and adequate modeling has been adopted [12]. However, considering
high gas fractions, particle-based methods suffer from high computational costs
caused by likewise increasing inter-phase interactions, which need to be captured at
these gas fractions [16,17]. For this reason, we shall restrict ourselves to the two-fluid
model, which omits this disadvantage and thus is to be favored over particle-based
methods. Two-fluid models are widely used and are among the most important
approaches in the group of so-called averaging methods. These methods are certainly
of significance for industry due to their ability to deal even with large-scale industrial
flow domains and dispersed two-phase flows.

Early work has been devoted to the simulation of bubbly flows in bubble columns
focusing on the problem of sufficiently modeling interfacial forces and turbulence.
Further focus has been set upon appropriately capturing polydispersity in bubble
swarms. Subsequent simulative studies have been performed in order to examine
regime transition. An overview of these topics and corresponding correlations can be
found in [18–26]. In the following a review covering two-fluid model based studies of
two-phase flows in bubble columns is given.
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Interfacial forces Sokolichin and Eigenberger [27] and Becker et al. [28] have
employed a simplified momentum balance for the gaseous phase, solely accounting
for the drag force along with a constant drag coefficient. However, both other bubble
forces and bubble-bubble interactions have been neglected. Mudde and Simonin [29]
have additionally modeled turbulence effects, causing the dispersion of a bubble
swarm. In other studies this is considered by an explicit dispersion force [30].

Subsequent studies consider the relevance and modeling of another crucial bubble
force as central topic of research: the so-called lateral lift force plays a central role
for correctly describing the bubbly flow perpendicular to the main rising direction of
the gas phase [31–33].

Turbulence For turbulence modeling, the standard k − ε model has initially been
applied. This approach has been originally developed for turbulence modeling in
single-phase flows and thus solely accounts for turbulence within the continuous liquid
phase [28, 29, 34]. However, an excessive dampening of flow characteristics has been
observed, which certainly is caused by the over-evaluation of the eddy viscosity in
such approaches.

Recent studies employ enhanced k−ε models, in which either additional model terms
account for the bubble-induced turbulence when calculating the eddy viscosity [35],
or additional source terms are directly introduced into the governing equations of the
k − ε model [1, 36]. Other methods are based upon a k − ε mixture model [37] or a
two-phase k− ε model [38,39]. Both methodologies consistently take the form of the
single-phase k− ε model when approaching the limiting case of pure phases (i.e., gas
or liquid flow).

More sophisticated approaches are subject of ongoing scientific research. For instance,
one of these approaches, which aims at turbulence modeling of bubbly flow within the
framework of a two-fluid model, comprises the adaption of the Large Eddy Simulation
(LES) concept [40,41].

Polydispersity Similar progress has been achieved capturing the polydispersity, as
it is typically found in bubble swarms. Initially, either one equivalent bubble diam-
eter has been applied to all bubbles assuming monodispersity [1] or, alternatively,
the bubble phase has been split up into two fractions providing two characteristic
diameters [42] – a priori at the beginning of a simulation.

Recent approaches encompass the solution of additional transport equations: on the
basis of mean bubble volumes, this enables to calculate a local characteristic mean
diameter from the volumetric gas (bubble) fraction [43]. Taking into account different
mechanisms for coalescence and break-up, this consideration leads to a small and
large bubble fraction. Similarly, other studies adopt additional transport equations
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for a mean bubble number density or interfacial area density in order to calculate
the respective equivalent diameter [44–49].

In contrast to the aforementioned simplistic approaches, the full or simplified solution
of population balance models remains to be mentioned as another modeling approach.
One has to distinguish among class methods [40, 50–52], MUSIG (MUltiple SIze
Group) models [53–56], the method of moments [57–60] and the Monte-Carlo method
[52,61].

Flow Regime Transition Each of the aforementioned studies cover partial aspects
of modeling for the simulation of bubbly flows in bubble columns. However, they
have been restricted to mostly one single flow regime. The scope of subsequent
studies has been set upon the simulation of regime transition occurring in bubble
columns. Regime transition criteria have been deduced from either the drift-flux
approach [62,63] or linear stability analysis [64–69] – focusing on the influence of the
specific model choice and formulation.

5.1.2. Scope and Objectives

Since the two-fluid model is based on averaging, models are required taking into
ac-count the following aspects:

• interfacial forces,
• turbulence at high gas fractions (incl. bubble induced turbulence),
• swarm effects in dense bubble swarms,
• polydispersity due to bubble coalescence and break-up in dense bubble swarms

and
• mixing within the continuous liquid phase

Appropriate models to encounter these points have to be considered [70]: it is
important to determine the underlying model parameters in a physically sound
manner. In doing so, attention must be paid to the efficiency and stability of the
numerical simulation procedure. Furthermore, realizability and reliability needs to
be examined; thus, a validation study has to be performed.

This work [71] aims at the comprehensive simulation of both the fluid dynamics and
liquid mixing characteristics in bubble column reactors at high gas phase fractions
using CFD. In particular, solely models obeying the aforementioned requirements
will be ultimately applied. This covers both the stability and efficiency as well as a
conceptual proximity to the underlying two-fluid model.
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Local Averaged

Volume-
Averaging

Figure 5.2: Concept of interpenetrating continua and principle of
volume-averaging.

5.2. Modeling

One pivotal benefit of the two-fluid model is its use for the numerical simulation
of flows in even large industrial-scale reactors at eligible computational costs. The
reason for this is the model’s capability to apply a quite rough spatial resolution
of the flow domain. With the framework of a two-fluid model the present phases
are considered as interacting and interpenetrating continua [15]. This principle
is schematically illustrated in figure 5.2 [72]. However, as a consequence of the
underlying averaging procedure, the flow structure and topology is not explicitly
resolved. Therefore, additional modeling of so-called closure terms is required in
order to fully describe a two-phase flow and subsequently solve a corresponding two-
fluid model. These closure terms characterize the intensive interplay of both phases
and thus their flow.

Closure modeling is commonly based upon empirical data, that depend on flow
properties and parameters. Thus, in turn, the quality and the performance of a
two-fluid CFD study significantly depend on the underlying closure models.

Presuming incompressible two-phase flow without phase change (i.e., evaporation or
condensation), the following conservation equations have to be solved [27,73]:

∂αϕ
∂t

+∇•
(
αϕ Uϕ

)
= 0, (5.1)

∂αϕ Uϕ

∂t
+∇•

(
αϕ Uϕ Uϕ

)
+∇• (αϕRϕ

eff)

=− αϕ
ρϕ
∇ pϕ + αϕg +

∑
Fϕ

ρϕ
. (5.2)

Herein, αϕ and Uϕ denote the volumetric phase fraction and velocity of a phase
ϕ with density ρϕ. Rϕ

eff is the effective Reynolds stress tensor. The term ∑
Fϕ
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represents the sum of all interfacial forces and thus states the pivotal closure term
taking into account the interfacial momentum transfer.

Generally, it is of no relevance within a two-fluid model framework, which phase
actually takes the part of the continuous phase and which phase takes the one of
the dispersed phase. However, since the term ∑

Fϕ in equation 5.2 depends on
the particular structure of the interacting phases, it is necessary to distinguish the
dispersed from the continuous phase for further modeling purposes.

Since this study focuses on bubbly flows, the gas (bubble) phase shall be denoted as
ϕ = a being consequently modeled as dispersed phase, whereas the continuous liquid
phase is identified by ϕ = b.

5.2.1. Interfacial Interactions

The closure term∑
Fϕ represents the sum of all interfacial forces and thus comprises

the momentum transfer between both phases to be treated within the two-fluid model
framework. In general two distinct categories are of interest:

• drag force and
• non-drag forces.

For bubbly flows the non-drag forces basically encompass the lateral lift force Fl, the
turbulent dispersion force Ftd and the virtual mass force Fvm. Consequently, the
closure term results in∑

Fϕ = Fd + Fl + Fvm + Ftd. (5.3)

The fluid dynamical origins of these forces are provided in table 5.1.

Figure 5.3 schematically summarizes the respective effects of interfacial forces within
a bubbly flow scenario [74]. In the remainder the corresponding interfacial force
models are described in detail, as they have been implemented and employed in the
present study.

Drag force Within a two-fluid model the drag-force reads

Fd = 3
4αaCd

ρb

da
|Ub − Ua|

(
Ub − Ua

)
. (5.4)

The drag coefficient Cd herein is a function of the bubble Reynolds number:

Re ≡ da|Ur|
νb

. (5.5)
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(a) drag force. (b) virtual mass force.

(c) lateral lift force. (d) turbulent disper-
sion force.

Figure 5.3: Interfacial forces in bubbly flows.
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Table 5.1: Forces exerted on a fluid particle.

Fd The drag force acts on particles in case they move with
a relative (slip) velocity Ur with respect to an underlying
flow. Consequently a fluid particle is exerted to a resisting
force which is opposed to the direction of its movement.

Fl The lateral lift force is a shear-induced force on the fluid
particle due to a non-uniform incident flow of the continuous
phase. For bubbly flows this is the most important non-
drag force, since the lateral lift force acts perpendicular to
the drag force. It crucially affects the evolution of typical
bubbly flow characteristics.

Fvm The virtual mass force accounts for the effect that accelerat-
ing particles always entrain a certain amount of surrounding
fluid.

Ftd The turbulent dispersion force accounts for turbulent fluctu-
ations in the flow field acting on the fluid particles. These
turbulent eddies in the continuous phase usually tend to
scatter the dispersed phase particles.

There are various models present in literature, aiming at the modeling of the drag
co-efficient. Exemplary the correlations according to Schiller and Naumann [75] and
Tomiyama [19] are provided below, as they were implemented as drag force models:

• Schiller and Naumann [75]
Considering small spherical bubbles at low bubble Reynolds numbers, the drag
coefficient Cd can be modeled by underlying the correlation according to Schiller
and Naumann:

Cd =
{ 24
Re

(
1 + 0.15Re0.687) Re ≤ 1000

0.44 Re > 1000.
(5.6)

The deviation from the experimental standard drag curve is ±5% for bubble
Reynolds numbers below 1000 [76].

• Tomiyama [19]
In 1998 Tomiyama has published a correlation for the drag coefficient covering
the effect of the bubble shapes as well as the contamination of the liquid phase.

Cd = max
[
min

(
A

Re

(
1 + 0.15Re0.687

)
,
3A
Re

)
,
3
8

Eo

Eo+ 4

]
. (5.7)
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Another dimensionless number, the Eötvös number Eo, is used in this correla-
tion in order to account for the altering shape of large non-spherical bubbles,
which affects the drag coefficient. The Eötvös number represents the ratio
between buoyancy and surface tension force:

Eo ≡ ∆ρgd2
a

σ
. (5.8)

The additional parameter A can be thought of a model parameter taking
into account the effect of contamination in the continuous phase – and thus
the contamination of the phase interface – on the drag coefficient of a single
bubble. Tomiyama determined this parameter to be between A = 16 for a pure
gas/liquid system (e.g., pure water and air bubbles) and A = 24 for a slightly
contaminated system (air bubbles in tab water) [19,77].

Non-drag forces

lateral lift force There are various model formulations, aiming at the description of
the lateral lift force. The following is found to be widely used:

Fl = αa ρ
bCl

(
Ub − Ua

)
× ω̄b with ω̄b = ∇× Ub

. (5.9)

For the corresponding coefficient Cl again a multitude of models are available.
Exemplary, the models according to Tomiyama [19] and [19] and Legendre &
Magnaudet [78] are set out below.

• Tomiyama [19]

Cl =


min

{
0.288tanh(0.121Re)

0.00105Eo3−0.0159Eo2−0.0204Eo+0.474
Eo < 4

0.00105Eo3 − 0.0159Eo2 − 0.0204Eo+ 0.474 4 ≤ Eo ≤ 10
−0.29 Eo > 10.

(5.10)

This correlation has been published in 1998 for large bubbles in pipe flows.
Currently it is one of the most used correlations – beside the use of a
constant lift coefficient using Cl = 0.5. It is based upon experiments
where trajectories of gas bubbles in shear flow have been evaluated. These
measurement were persued in water/glycerine mixtures at various concen-
trations.

Evidently, the particular model correlation to evaluate the lift coefficient
holds the Eötvös number as given by equation 5.8. Thus, the correlation
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according to Tomiyama results in lift coefficients of 0 < Cl ≤ 0.288
for small bubbles and a negative value for large ones. From the above
correlation a limiting diameter of 5.6mm can be extracted for an air/water
system, at which the lift coefficient changes its sign. In consequence,
bubbles larger than 5.6mm are moving towards the center line, while
smaller bubbles move towards the wall of a bubble column.

However, it has to be noted, that this correlation should be applied with
care when considering systems different from air/water. Tomiyama’s ex-
periments have been pursued using a glycerine/water mixture, the viscos-
ity of which has exceeded the viscosity of pure water by far. Thus, the
transfer of results to an air/water system has to be done by means of
extrapolation.

• Legendre and Magnaudet [78]

Cl =
√(

C lowRe
l

)2 +
(
ChighRe
l

)2
(5.11)

with C lowRe
l = 6

π2 (ReSr)1/2 J(ε)

ChighRe
l = 1

2
1 + 16Re−1

1 + 29Re−1

Sr ≡ Re∆
Re

, Re∆ ≡
ω̄bd

2
a

νb

ε ≡

√
Sr

Re
and J(ε) ≡ 2.255

(1 + 0.2ε−2)3/2 .

In 1998 Legendre and Magnaudet have derived this correlation for a
uniformly moving bubble in linear shear flow. This has been done by
numerically solving the Navier-Stokes equations assuming a smooth and
pure bubble surface, such that no particle rotation was induced.

The model has been found to be valid for 0.1 ≤ Re ≤ 500 and for
0 ≤ Sr ≤ 1.

turbulent dispersion force The turbulent dispersion force is usually introduced into
the momentum balance by a term that is proportional to the gradient of the
dispersed phase volume fraction. Examining the concrete model formulation,
however, particularly the turbulent dispersion force models exhibit various
forms. The following is found to be widely used [79]:

Ftd = Ctd ρ
b k∇αa. (5.12)

In the following, the dispersion coefficient Ctd is assumed to be constant, taking
a value between 0.1 and 1.0 [80]. Thus, the turbulent dispersion force is assumed

148



5.2. Modeling

to be proportional to the product of the mean kinetic energy and the gradient
of the volumetric gas phase fraction. In this work, the dispersion coefficient Ctd
is 0.1.

virtual mass force The virtual mass force is written in the form:

Fvm = Cvmαa ρ
b

(
Da Ua

Dt
− Db Ub

Dt

)
(5.13)

with Di

Dt
≡ ∂

∂t
+ Ui

•∇.

For spherical single bubbles the virtual mass force coefficient reads Cvm = 0.5
[81, 82]. For bubbles with altering shapes this value is usually found to be
smaller. However, there are not many reliable correlations, which mostly
have been stated to be the reason for neglecting the virtual mass force so far.
Sokolichin and Eigenberger [83] propose a constant virtual mass force coefficient
of Cvm = 0.25 for these bubbles with variable shapes.

However, Zhang [84] states that the effective influence of the virtual mass force
coefficient in bubbly flows is rather small.

wall lubrication force At this point, the so-called wall lubrication force should be
mentioned as well for completeness. This force has first been introduced by
Antal et al. [85] in order to account for the repulsive effect, which bubbles are
exerted to in the vicinity of the wall of the column as a consequence of an
asymmetric incident flow near the wall boundary layer.

However, since models for the wall lubrication force are subject to various
restrictions and constraints, it is neglected in the further course of this study.
Instead of the wall lubrication force, its tantamount effect can be mimicked: in
suspending the lateral lift force near walls, we achieve the expected increase of
the gas phase fraction in vicinity of walls (wall peak).

5.2.2. Turbulence

For turbulent two-phase flows in bubble columns the governing equations 5.1 and 5.2
require further closure due to the turbulent contribution to the stress tensor.

The standard k− ε model approach – even though it is commonly applied and widely
used – fails, since it solely considers the turbulence (turbulence fluctuations) within
the liquid phase: the standard model is usually extended by a simple additional
term, aiming to incorporate the turbulence induced by bubbles in their wake. The
model failure can be assigned to the fact, that with increasing gas phase fractions
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the turbulent fluctuations can no longer be assumed to be dominated by the liquid
phase.

For this reason, we adopted the so-called ’basic-mixture turbulence model’ according
to Rusche [37,86] in the present study. The turbulent kinetic energy k and dissipation
ε are considered as mixture quantities:

∂ k

∂t
+∇•

(
U k

)
−∇•

(
νt
σk
∇ k

)
= P − ε , (5.14)

∂ ε

∂t
+∇• (U ε )−∇•

(
νt
σε
∇ ε

)
= ε

k
(C1P − C2 ε ) , (5.15)

where the turbulent viscosity can be evaluated according to equation 5.16.

νt = Cµ
k 2

ε
. (5.16)

The model parameters are given in table 5.2.

Table 5.2: Coefficients of the basic-mixture turbulence model.

Cµ C1 C2 σk σε

0.09 1.44 1.92 1.00 1.30

5.2.3. Swarm Effects

The issue of ’swarm effects’ has to be addressed for cases, where correlations are
generally valid for single bubbles, but fail for bubble swarms. This becomes more
significant for high volumetric phase fractions of the dispersed phase. In this case
single bubble correlations have to be corrected.

Throughout this work we corrected the coefficients pertaining to the drag force [87–
93], the lateral lift force [94] and the virtual mass force [95]. This is accomplished by
use of a pre-factor being a function of the volumetric phase fraction αa. Illustratively,
this approach can be demonstrated for the drag force coefficient, for instance, in which
the well known swarm correction according to Richardson and Zaki [87] applies:

Cd,s = Cd f (αa) with f (αa) = 1
(1− αa)m

, (5.17)

where m denotes the so-called swarm exponent, which depends on the flow condi-
tions based on the bubble Reynolds number provided in equation 5.5. For laminar

150



5.2. Modeling

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.5

1

1.5

2

2.5

3

3.5

4

gas phase fraction αa

sw
ar
m

co
rr
ec
ti
on

f
(α

a
)

Simmonet et al.
Griffith et al.
Bridge et al.
Marrucci et al.

Richardson & Zaki (turb.)
Kendoush et al.

Richardson & Zaki (lam.)
Tomiyama et al.

1

Figure 5.4: Swarm correction for the drag force coefficient.

conditions m = 4.65, whereas for a developed turbulent flow m = 2.39 is found to be
valid. Generally,

m =


4.65 Re ≤ 0.2

4.35
Re0.03 0.2 < Re ≤ 1
4.45
Re0.1 1 < Re ≤ 500
2.39 500 < Re

. (5.18)

Admittedly there is usually a significant uncertainty of the applicability of swarm
corrections – especially for the numerical simulation of dense bubbly flows employing
the two-fluid model [96]. In figure 5.4 results for various correlations are depicted,
all of which are claiming to account for the swarm effect on the drag force coefficient
by use of a pre-factor. However, employing these correlation is in the strict sense
only justified for cases, where both the (usually different) ranges of validity and
the under-lying model assumptions are found to be fulfilled. For instance, the
correlation according to Richardson and Zaki is solely valid for a system comprising
rigid particles. Evidently, this assumption is no longer valid for bubble flows at high
local gas phase fractions.

5.2.4. Polydispersity

Capturing polydispersity within gas/liquid flows at high gas phase fraction (hetero-
geneous flow regime) in bubble columns plays another crucial role within a numerical

151



5. Gas-Liquid Flows in Bubble Columns – Part I

solution procedure: at high bubble densities the phase contact is typically very
intensive. In consequence, bubble coalescence and break-up are observed, which
leads to a polydisperse bubble size distribution.

In general, different approaches can be chosen for modeling. In general, bubble
population balances are widely used. The disperse system is split up into bubble size
classes, for each of which one transport equation needs to be solved.

In the framework of the present study, we applied both the concept of a mean
interfacial area density (IATE1) according to Kocamustafaogullari, Ishii and Hibiki
[44–46] and Mewes, Lehr and Millies [47, 48], as well as Reyes’ concept of a mean
bubble number density [49] (2, according to [97, 98]). The major advantage of these
concepts is based on the fact, that only one additional transport equation – either for
the interfacial area density ai or the bubble number density n – needs to be solved:

∂ai
∂t

+∇•
(
ai U ai

)
= Φ ai , (5.19)

∂n

∂t
+∇•

(
ni U n

)
= Φ n. (5.20)

Within a two-fluid model the convection of the interfacial area density and the
bubble number density is accomplished in terms of their corresponding transport
velocities, U ai and U n respectively. Advantageously, these are usually modeled as
U ai = U n = Ua. The source terms Φ ai and Φ n account for the change in the mean
interfacial area density resp. bubble number density due to the mean of coalescence
and break-up events being observable. As depicted in figure 5.5, there are basically
three mechanisms to be considered. Hence, the source terms take the final form:
Φ = Φ TI + ΦRC + ΦWE [99].

In particular the effects as given in table 5.3 are considered.

The interfacial area density and the bubble number density are related to each other
according to equation 5.21, which relies on a known shape factor Ψ (assuming solely
spherical bubbles, for instance):

n = Ψ

(
a3
i

α2
a

)
, where Ψ ≡ 1

36π . (5.21)

Furthermore, a local equivalent diameter da can be evaluated from the local volu-
metric gas fraction αa. This diameter representatively accounts for the bubble size
distribution (local polydispersity) by means of a single diameter (global polydisper-
sity) [100]:
1 IATE: Interfacial Area Transport Equation
2 ABND: Averaged Bubble Number Density
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(a) random colli-
sion.

(b) wake entrain-
ment.

(c) turbulent
impact.

Figure 5.5: Basic bubble coalescence and break-up mechanisms.

Table 5.3: Bubble coalescence and break-up sources.

ΦRC mean effect of random collisions (RC) due to fluctuating
bubbles

ΦWE mean effect of wake entrainment (WE), accounting for small
bubbles being entrained and accelerated in the wake of
larger bubbles. In consequence, these small bubbles might
catch up leading to coalescence with larger ones

Φ TI mean effect of turbulence induced bubble break-up due
to turbulent impact (TI) of bubbles with eddies in the
turbulent liquid phase
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Figure 5.6: Principle of local vs. global polydispersity.

da ≡ d30,a = 3

√
6αa
nπ

. (5.22)

This (paradigm) shift from local to global polydispersity is illustrated in figure 5.6.

5.2.5. Mixing

In order to capture the phenomenon of macro-mixing within the continuous phase,
virtual tracer experiments are considered. For this purpose, we introduce and solve
another scalar transport equation for a tracer concentration c in the liquid phase:

∂φc
∂t

+∇•
(
φc Ub

)
−∇•

(
αb
(
Dc +Dt

c

)
∇c
)

= Φc. (5.23)

Herein φc = αbc denotes the total amount of tracer in the continuous phase. Dc

and Dt
c represent the transport coefficients for molecular and turbulent diffusion,

respectively. The latter is modeled as Dt
c = νt/Sct, which can be deduced from the

analogy of momentum and mass (chemical species) transfer. Herein the turbulence
Schmidt number is assumed to be Sct = 0.3.

In this simulative study the source term Φc is used to accomplish a tracer unit step-
injection. This imposes a unit or Heaviside step, which is well-known in Residence-
Time-Distribution (RTD) studies. Subsequently – after the tracer has been injected
near the liquid surface – we examine the tracer distribution and its temporal evolution
of the tracer concentration field.
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5.3. Summary

For the simulation of gas/liquid flows in large industrial-scale bubble columns, the
two-fluid model has proven to be an appropriate and notable tool due to its beneficial
assumptions. However, prior to its adoption, various effects in dense bubble swarms
need to be considered first. This has to be done by means of appropriate and physi-
cally sound modeling.

In order to capture the two-phase flow correctly, it is important to examine interfacial
forces, turbulence, swarm effects and polydispersity (inter alia). The first part of
this contribution sets out the detailed modeling of dense bubble swarms in bubble
columns by use of the two-fluid model. The subsequent second part – Numerical
Simulation and Results – focuses on quality and performance of the CFD simulation
when the introduced basic model approaches for bubbly flows in bubble columns are
applied.
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6
Numerical Simulation of dispersed
Gas-Liquid Flows in Bubble Columns at
high Gas Phase Fractions using
OpenFOAM® – Part II: Numerical
Simulation and Results

Abstract

The design of industrial gas/liquid reactors such as bubble columns requires detailed
information with respect to the flow structure and characteristics of two- or multiphase
systems in the reactor. The contribution is focused on the evaluation of the simulation
results obtained by a selection of models. The results are further compared with those
reported in literature. The simulation have been performed with the CFD software
OpenFOAM®. The main focus of the numerical simulation was set on capturing the
characteristic process and design parameters of bubble columns.
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6.1. Introduction

As a platform for model implementation the Open Source CFD software OpenFOAM®

(Open F ield Operation And Manipulation) is used [1–3]. OpenFOAM is a flexible
and efficient C++ library, providing numerous numerical algorithms, methods and
solvers for solving continuum mechanics problems in the field of chemical and process
engineering. For this purpose, OpenFOAM employs a syntax – even when programing
on a user level (top-level) – being as close as possible to the conventional mathematical
notation for tensors and partial differential equations. Various Object Oriented Pro-
graming (OOP) techniques allow to mimic common data types and basic operators [1].
Hence, OpenFOAM might be seen as a flexible and efficient development platform
for a variety of continuum models in the field of reactor design.

In OpenFOAM v.1.4.1, which was used at the beginning of code development, the
top-level solver bubbleFoam has already been provided. However, bubbleFoam only
exhibits a limited capability for simulating bubble swarms in bubble columns at high
superficial gas velocities. Thus, the code was extended towards bubbleFoamExt. The
present study particularly focusses on capturing the interfacial forces, turbulence,
swarm effects, polydispersity and the mixing characteristics adopting basic models -
as they were described in detail in part I Basics and Modeling of this contribution.

6.1.1. Flow Domain Discrimination

In general, there exist two two-phase flow regions in a bubble column. These flow
regions differ from each other in the phases taking either the continuous or the
disperse part and interchanging their role when crossing the liquid surface. Thus,
flow domain discrimination states another pivotal modeling aspect - beside capturing
of characteristic two-phase flow phenomena. This discrimination is necessary since
the used model correlations are commonly restricted to either bubbly or droplet flows
and hence rarely encompasses both cases in their applicability. Within the framework
of this work the flow domain discrimination is accomplished using a simple scalar field
Γi.

The underlying principle is illustrated schematically in figure 6.1: the evaluation is
based upon the gradient of the volumetric phase fraction field. Interpolating the
volumetric gas-phase fraction linearly between two cell centers, the formal ’owner’
of the gas/liquid interface can be identified. This is accomplished using the cell-face
interpolated value of the volumetric gas-phase fraction and the slope of the straight
line educing from its linear interpolation, where the conditions αa > 0.5 in one cell
and αa < 0.5 in the respective neighboring cell is found to be fulfilled. Consequently,
the resulting scalar field Γi enables to distinguish between the two flow regions, taking
the value Γi = 1 below and Γi = 0 above the surface of the liquid.
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Figure 6.1: Principle of flow domain discrimination.

6.2. Numerical Simulation

For a substantial simulation-based analysis of both the fluid dynamics and liquid-
phase mixing characteristics in bubble columns at high superficial gas velocities, a
rectangular bubble column (Pseudo-2D) and a cylindrical bubble column (3D) have
been examined. The following underlying phenomena are of paramount interest in
the present study:

• transient dynamics of the dispersed gas phase,
• integral gas hold-up and
• distribution of a tracer within the continuous phase.

The results are compared with own reference data based upon experiments. Then,
conclusions are drawn with respect to the performance, the quality and the applica-
bility of the models as they were introduced for the purpose of capturing the various
flow phenomena in bubble columns.

Since experimental reference cases and models are mostly based on the air/water
system, the present simulations of two-phase flows in bubble columns have been
restricted to this system as well.

Furthermore, all numerical simulations are subject to the same initial and boundary
conditions for the domain interior (a priori) as well as for the domain boundaries
(ab initio): a non-slip boundary condition is imposed on the liquid-phase velocity
at the wall of the column, while for the gas-phase velocity a free-slip condition is
applied. For all other scalar fields the Neumann (or second-type) boundary condition
dictates a zero gradient at the domain boundaries. The conditions at the gas inlet
are specified in terms of the phase velocities (i.e. the respective superficial phase
velocities), the volumetric gas-phase fraction and bubble number density (Dirichlet
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boundary conditions). Furthermore, a Neumann boundary condition is imposed on
the inlet pressure. Inverse conditions can be found at the top of the bubble column,
where the gas having entered the bottom of the column leaves the flow domain.

Additionally, mesh sensitivity and convergence analyses have been performed in order
to minimize discretization and convergence errors. Thus, the results can be regarded
as independent from both the underlying mesh resolution and the applied residuum.

6.2.1. Rectangular Bubble Column (Pseudo-2D)

Scope and Objectives The simulations are performed for a rectangular bubble
column in order to clarify the contribution of the lateral lift force to the transient
behavior of an evolving bubble plume.

The reason for the choice of a pseudo-2D bubble column lies in its fundamental
suitability for videometric analysis: at low integral gas hold-up bubble-bubble over-
lapping can be neglected to a good approximation. Thus, the local volumetric
gas fraction might be determined using a high-speed camera system along with an
automatic image processing. This enables to assess both the performance and the
quality of a simulation through a detailed validation study.

Reference cases There are numerous reference cases for rectangular bubble columns.
In the present work, we focus on the horizontal liquid-phase velocity and the local
volumetric gas phase fraction. Hence, the following reference studies for a pseudo-2D
bubble column (100 cm x 20 cm x 5 cm) have been considered:

• Gomes et al. have pursued experiments, aiming at the horizontal velocities of
the continuous phase [4]. The measurements were performed in a rectangular
bubble column with the above dimensions. This bubble column was operated
at a filling level of 45 cm with a air/water system. The measurements were
taken at half the filling level.

• Additionally, own videometric measurements in such a pseudo-2D bubble col-
umn have been accomplished in order to evaluate the local volumetric gas-phase
fraction [5].

Geometry modeling and mesh generation Figure 6.2 shows a schematic illus-
tration of the flow domain for the pseudo-2D bubble column. The size of the area is
given by 20 cm x 5 cm in width and depth. Herein, the gas inlet is centered with an
area of 5 cm x 2.5 cm. For all simulation runs the initial filling level was chosen to be
50% being equivalent to a filling height of 50 cm.
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Figure 6.2: Domain and computational mesh for the pseudo-2D bubble
column.

Owing to the rectangular geometry of the column, a structured cartesian mesh might
be applied advantageously. As depicted in figure 6.2, the mesh exhibits a higher
spatial resolution near the inlet and walls in order to capture gradients sufficiently.
The mesh consists of 33 000 computational cells in total.

6.2.2. Cylindrical Bubble Column (3D)

Scope and Objectives For the simulations of the cylindrical bubble column the
objective was to capture both the dynamics of the dispersed phase and the continuous
phase mixing characteristics in a most detailed and realistic manner. Contrary to
the aforementioned simulation of the pseudo-2D bubble column, conditions for the
3D case now correspond to a higher gas hold-up.

Reference cases For the validation of the fluid dynamics, we first consider the
integral gas hold-up in the cylindrical bubble column of 20 cm in diameter. Further-
more, the mixing characteristics within the continuous liquid phase will be examined
by following the distribution of a tracer subsequent to a step-injection at a height of
1.5m near the liquid surface. The detection of the tracer concentration is performed
2 cm above the gas inlet.

The validation study is based on the following reference cases:
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• Deckwer [6] has examined the integral gas hold-up for an air/water system
in a bubble column of 20 cm in diameter operating at various superficial gas
velocities.

• Deckwer [6] has published a correlation for the axial dispersion coefficient in
the continuous liquid phase in terms of the Bodenstein number BoL and the
Froude number FrG,

BoL = 2.83Fr0.34
G , (6.1)

which is based upon experimental data from the work of various groups. In
particular, the BoL and the Froude number FrG are defined as

BoL ≡
US,0dBC
Dax

(6.2)

FrG ≡
U2
S,0

gdBC
, (6.3)

where US,0 and dBC denote the superficial gas velocity and bubble column
diameter, respectively.

Geometry modeling and mesh generation Figure 6.3 depicts a schematic of the
flow domain representing the cylindrical bubble column. The flow domain comprises
of a cylinder of 20 cm in diameter. The bubble column is 2m in height and has been
initialized up to a filling level of 75% equivalent to 1.5m in filling height. Based upon
this geometry, a structured hexahedral mesh has been generated as depicted in figure
6.3. The domain is sub-divided into 150 computational cells in the axial direction
and into 217 cells used for the cross sectional area, forming a so-called butterfly-grid.
For the latter, a square with an edge length of 8 cm is resolved by 7x7 cells. The
remainder of the cross sectional area is sub-divided into four segments of equal size,
each of that spatially discretized by 6x7 cells. In total, the computational mesh
comprises of 32 550 cells.

6.3. Results

6.3.1. Rectangular Bubble Column (Pseudo-2D)

Illustration of Results Figure 6.4 shows a sectional view of the bubble column at
different times after its start-up [7]. The lower part is completely filled with water,
while the upper part is filled with air.

At t = 0.0 s, the lower part is completely filled with water. Initially, when air enters
the bubble column a symmetric bubble plume evolves. However, an asymmetric
distribution within the bubble plume (indicated by the change in the color in the
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Figure 6.3: Domain and computational mesh for the pseudo-2D bubble
column.
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(a) t =0.0 s. (b) t =1.0 s. (c) t =10.0 s. (d) t =30.0 s.

(e) t =90.0 s. (f) t =120.0 s. (g) t =150.0 s. (h) t =180.0 s.

Figure 6.4: Simulation results for the pseudo-2D bubble column:
volumetric gas-phase fraction.
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gas-phase fraction) can already be observed for the next time step. Subsequently,
a notable asymmetric bubble plume develops. Finally, the bubble plume begins to
oscillate periodically significantly deviating from its central position.

Evaluation of Results For a quantitative evaluation, three distinct model ap-
proaches have been adopted to determine the lateral lift force coefficient, namely
the models according to Tomiyama [8] and Legendre & Magnaudet [9] as well as a
model employing a constant lateral lift force coefficient, which was chosen to take the
value Cl = 0.25.

The horizontal liquid velocity has been taken in the center of the column with respect
to its initial filling level. Figures 6.5a to 6.5c depict the results of the simulation runs
with respect to the three models mentioned before.

Discussion of Results A similar trend can be observed in all three cases: after
about 40 s the maximum amplitude of the horizontal liquid velocity is reached at
approximately 0.2 m

s . Hence, only marginal deviations are recognized during the
start-up phase of the column. The amplitudes obtained from numerical simulations
are found to be in very good agreement with the ones determined by Gomes et al. in
their experiments [4].

Regarding the maximum gas-phase fraction, a comparison with results from videom-
etry (including subsequent image processing) reveals a very good agreement: the
maximum volumetric gas-phase fraction was found to be below 5% both in simula-
tions and in experiments.

At this point, we should emphasize, that this low value is the reason for the slight
differences in the results, even though different lateral lift force models have been em-
ployed: at this low gas-phase fractions bubble coalescence and break-up phenomena
have not yet notably taken place. Thus, the lateral lift force has not yet started to set
notable effect on the transient movement of the bubble swarm. However, even these
marginal differences surely show the pivotal relevance of model selection considering
the lateral lift force. This inherently involves the issue of correctly capturing the
corresponding transient movement of the bubble plume.

6.3.2. Cylindrical Bubble Column (3D)

Illustration of Results Figures 6.6 and 6.7 show the vertical cross section, illus-
trating the gas-phase velocity (vectors) and volumetric gas-phase fraction (contours)
at a superficial gas velocity of 6 cm

s [10]. The time interval between two subsequent
cross sectional views was chosen to be ∆t = 2 s.
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Figure 6.5: Evaluation of Results: change of the horizontal liquid
velocity obtained in the center of the pseudo-2D bubble
column.
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Figure 6.5: Evaluation of Results: change of the horizontal liquid
velocity obtained in the center of the pseudo-2D bubble
column.

As shown in figure 6.6, the bubble swarm rises near the center line of the bubble
column and exhibits a high rising velocity. The reason for this certainly rests on the
radial separation of small and large bubbles due to lateral lift, resulting in a central
bubble swarm of mostly large bubbles.

Figure 6.7 illustratively depicts the significant differences which can be observed for
the radial distribution of the local gas-phase fraction. Taking quite low values near
the column wall, the gas fraction increases towards the center line. A closer look
further reveals that at these high gas velocities the movement of the dense bubble
swarm is clearly transient. Moreover, a notable wall effect can be observed hindering
the central bubble plume in its lateral movement.

Figure 6.8 shows the corresponding concentration field of a distributed tracer. The
tracer has been introduced step-wise into the liquid close to its surface. Again,
the time intervals between respective cross sectional views have been chosen to be
∆t = 2 s at a superficial gas velocity of 6 cm

s . Evidently, an asymmetric dispersion
can be ascertained, which does not exhibit a homogeneous distribution even after
15 s.

Evaluation of Results For the purpose of a quantitative analysis and evaluation
of both the simulation quality and performance – with respect to the comprehensive
capturing of the fluid dynamics in bubble columns – a comparison is drawn between
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Figure 6.6: Simulation results for the 3D bubble column: gas phase
velocity.
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Figure 6.7: Simulation results for the 3D bubble column: volumetric
gas-phase fraction.
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Figure 6.8: Simulation results for the 3D bubble column: tracer
distribution.
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Figure 6.9: Evaluation of Results: gas hold-up vs. superficial gas
velocity obtained in a cylindrical bubble column.

measurements performed by Deckwer [6] and the simulation results – figure 6.9. For
this, we examine the integral gas hold-up for different superficial gas velocities.

Figure 6.10 depicts the resulting course of the tracer concentration subsequent to
step-wise introduction near the surface of the liquid. For a quantitative comparison,
the 1D-axial dispersion model [11] is adopted in order to evaluate the axial dispersion
coefficient Dax as a model parameter by means of least-square fitting. The resulting
dispersion coefficient of Dax = 353.9 cm2

s is in good agreement with Dax = 361.2 cm2

s
obtained from the correlation according to equation 6.1.

Discussion of Results A comparison of the experimental results with the simu-
lation results for the integral gas hold-up yields a good agreement as indicated in
figure 6.9. However, it should be noted that the gas hold-up represents an integral
(overall) quantity and thus taking the gas hold-up as a measure clearly does not
assure the local gas-phase fractions to be equivalent at different operation conditions.
Nevertheless, it is the conformity over a broad range of the superficial gas velocity
including the sharp bend (indicating the regime transition from homogeneous to
heterogeneous flow regime) at a superficial gas velocity of about 3− 4 cm

s , indicating
a decent involvement of crucial phenomena by the respective models. This surely
includes the physically sound modeling of interfacial forces (drag force, lateral lift
force, turbulent dispersion force) as well as associated correction terms accounting
for swarm effects. Further, the consideration of polydispersity in the gas phase found
for high superficial gas velocities plays a pivotal role. This directly affects the different
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Figure 6.10: Evaluation of Results: tracer distribution subsequent to a
stepwise dosing in a cylindrical bubble column.

bubble rising velocities and thus different bubble residence times within the bubble
column.

However, at a higher superficial gas velocity discrepancies can be observed. The
reason for this can be found in approaching the limits of validity of the underlying
two-fluid model regarding its constraints to the local mesh resolution: for modeling
the inter-phase interactions within the two-fluid model framework (based on the
concept of interpenetrating continua), the gas phase was chosen to take the part of
the dispersed phase. Due to the high superficial gas velocities, subsequent coalescence
causes the emergence of large bubbles. The size of these bubbles locally approaches
the size of the computational mesh cells, which, in turn, causes the corresponding
underlying assumption to be invalid.

A comparison of the tracer concentration obtained by the 1D-axial dispersion model
and by the CFD simulation clearly reveals that both approaches take into account
both the convective and the dispersive transport. However, the CFD approach
includes the three-dimensional case and (which is more important) is independent
from any geometry constraints. Thus, the non-uniform transport of the tracer within
the liquid phase is caused by the transient flow of the dispersed phase. Figure 6.10
shows the relevant simulation results. The strong coupling being inherent to the
transient two-phase flows within a bubble column is taken into account. As the
superposition of convective and dispersive transport surely looses relevance when
increasing the superficial gas velocity, the observed concentration fluctuations are
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reasonable. Thus, it is CFD offering a new avenue towards the local analysis of
transient transport phenomena within bubble columns.

6.4. Summary and Outlook

Numerical simulations of both fluid dynamics and mixing characteristics in bubble
columns show, that a good qualitative and quantitative agreement between experi-
mental and simulative results can be achieved when a physically sound modeling base
is provided. This approach encompasses inter-phase interactions (including swarm
effects), two-phase turbulence and polydispersity, taking into account basic bubble
coalescence and break-up mechanism.

Furthermore, the extent of validity of the models along with the underlying assump-
tions seems to be critical. For the simulation of dense bubble flows the following
considerations can be pointed out as possible directions for model enhancements:

• Currently, the use of swarm corrections is associated with significant uncer-
tainties. Although numerous correlations for the swarm correction of the
drag coefficient can be found, additional correlations are required, taking into
account the swarm effect biasing non-drag forces (i.e. lateral lift and turbulent
dispersion force). More validation studies based on experimental reference cases
have still to be performed.

• The development of turbulence models is still a crucial point. The basic mixture
turbulence model presented in this work is based upon mixture quantities and
thus can only be seen as a simple (numerically stable) basis for continuing
studies. As turbulence models typically couple with models for bubble coales-
cence and break-up or with bubble forces models, turbulence modeling has to
be considered crucial for correctly capturing both mixing characteristics within
a phase and among phases.

• When selecting a particular model for the description of bubbly flows, one needs
to bear in mind that most of these models rely upon experiments with the
air/water system. Hence, capturing the effects of contamination (surfactants)
and of other material properties different from the air/water system is crucial.
The latter surely has to be altered towards more relevant systems in reaction
engineering applications.
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7
Numerical Simulation of Species
Transfer across Fluid Interfaces in
Free-Surface Flows using OpenFOAM®

Abstract

This paper presents the Continuous-Species-Transfer (CST) method, which enables in-
terface capturing techniques – a group among Computational Multi-Fluid Dynamics
(CMFD) methods that rely upon a smooth interface representation – to deal with species
transfer. In this study we examine realistic species transfer across fluid interfaces, taking
into account both the steep interfacial concentration gradients (at high Schmidt num-
bers) and the sharp interfacial concentration jump (at high Henry coefficients due to
different species solubilities). Thus, the main objective is to establish the CST method for
species transfer across fluid interfaces of arbitrary morphology in free-surface flows at
high viscosity and density ratios.

Detailed numerical simulations of single rising bubbles have been performed at high
resolutions. Results were compared to experimental data and correlations derived
thereof.
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Figure 7.1: Flow structures and physico-chemical phenomena in bubble
column reactors.

7.1. Introduction

Chemical reactors with bubbly flows are widely used in chemical reaction engineering
for a variety of processes, e.g., bubble columns in the chemical, petroleum, metallurgi-
cal and energy industries. Common examples for the applications of bubble columns
are liquid-phase oxidations, hydrogenations, chlorination, gas scrubbing, waste water
treatment and various biotechnological applications.

One pivotal point of interest concerns the flow regimes in bubble columns, as this
significantly influences the reactor’s performance – its conversion, site time yield and
selectivity. Though it is well known, that different flow regimes can be obtained
by variation of the bubble column’s operating parameters (such as superficial gas
velocity, pressure, etc.) or design parameters (aspect ratio, sparger, internals, etc.),
there is still a pivotal lack of detailed knowledge concerning the inherently complex
nature of the underlying fluid dynamics in bubble columns: flow structures are
intrinsically transient and characterized by very different spatial and temporal scales
as depicted in figure 7.1.
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It is therefore of major importance to develop both understanding and predictive sim-
ulation tools in order to obtain better and economically viable (efficient) technologies
for process intensification and optimisation of bubble column reactors.

For this purpose, a detailed understanding of the influence of mixing characteristics
within the continuous liquid phase as well as of the dynamics of the dispersed
gaseous phase upon species transport within a phase and species transfer across phase
interfaces is crucial. This clearly becomes even more important for fast chemical
reactions, where conversions take place in close vincinity to the bubble surface, greatly
influenced by its surrounding local mixing pattern and corresponding diffusive and
convective transport of the chemical species involved with these reactions.

In this work we perform detailed three-dimensional simulations covering the fluid
dynamics and species transfer in single bubble systems. Emphasis is put upon the
underlying physical background as well as the mathematical model and governing
equations derived thereof (sections 7.2 and 7.3), the basic framework of the employed
solution methodology (section 7.4), and detailed validation of both bubble dynamics
and species transfer across its interface (section 7.5).

7.2. Physical Background

7.2.1. Bubble Dynamics

In the past considerable research effort has been devoted to fluid dynamics in bubbly
flows (bubble dynamics) focusing on the bubble’s shape, wakes and velocities in
various liquids [1–9].

From the wide base of experiments examining the rising of single bubbles in a
quiescent liquid Clift et al. [5] presented a diagram as shown in figure 7.2. This
illustratively allows to distinguish among different bubble shape regimes dependend-
ing on characteristic dimensionless numbers. These are the bubble Reynolds number
Reb ≡ U∞db/νl representing the ratio of inertia to viscous forces, the Eötvös number
Eo ≡ g(ρl − ρb)d2

b/σ representing the ratio of buoyancy to surface tension forces and
the Morton number Mo ≡ g(ρl − ρb)η4

l /ρ
2
l σ

3, which is defined by the ratio of viscous
to surface tension forces. Note that this is not a complete set describing single bubble
dynamics in a quiescent liquid. Dimensional analysis reveals two more dimensionless
numbers, the density ratio Πρ ≡ ρl/ρb and viscosity ratio Πν ≡ νl/νb. Moreover, the
system purity plays a major role. Furthermore, other dimensionless groups might
be used in a complementary manner, i.e., We = Re2√Mo/Eo or Fr =

√
We/Eo.

However, it is common practice to base parametric studies upon this set of non-
dimensional numbers, when examining the bubbles’ shapes, rising velocities and/or
trajectories and wake phenomena.
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Figure 7.2: Bubble shape depending on
Reynolds, Eötvös and Morton
number [10].

It seems evident that the interplay of these characteristics of bubbly flows and their
underlying physical phenomena is utmost complex and cannot be considered decou-
pled. However, the above characteristics are useful for comparison with the bubble
dynamics and the species transfer across the bubble’s surface, and consequently serve
as a validation base in this study.

bubble shape According to figure 7.2 bubble shapes can be generally categorised
into three types, namely (1) spherical/ellipsoidal, (2) cap/skirted and (3) ir-
regular/wobbling. As the bubble interfacial area (or its specific area defined
as bubble interfacial area per bubble volume) characteristically varies among
these shape regimes – which as a consequence has a significant influence on the
overall species transfer across the bubble surface – it is advisable to examine
bubbles that pertain to different regimes. Thus bubbles of different size and
shapes were subject to this study.

bubble rising velocity Mainly depending on material properties and the purity of the
system under consideration the terminal rising velocity of bubbles provides
another feature to be considered. The terminal rising velocity significantly
influences the overall contact time and mean residence time available for the
species transfer. Thus, it must be captured correctly by the numerical simula-
tions.

Figure 7.3 shows the terminal rising velocities of bubbles within different shape
regimes for the air/water system. This velocity mainly depends on the surface
tension, the liquid phase viscosity and surfactants present in the system, each
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Figure 7.3: Bubble terminal rising velocity at different bubble
(equivalent) diameters in air/water system [5].

of which is influencing the bubbles’ inner circulation, shape deformation and
oscillation – in return impairing, e.g., the drag a rising bubble is exerted to.

bubble trajectory Probably the most important characteristics to be examined are
bubble wake phenomena. These greatly influence both the rising path and
mixing pattern in the proximity of the bubble, which in turn will influence the
chemical conversion of a component in the liquid phase after having undergone
the interfacial species transfer.

In order to provide an avenue for quantitative validation of our numerical
simulations, it is useful to have a more detailed look on the bubble’s trajectory,
as this depends on the wake behind a rising bubble. Figure 7.4a depicts typical
wake types that are found to exhibit completely different flow and mixing
patterns: (1) steady wake without circulation (2) steady wake with circulation
(3) unsteady wake with vortex structures and vortex shedding. Figure 7.4b
illustrates the different bubble trajectories associated to the different wake types
that are observed while bubbles rise. Accordingly, bubble trajectories can be
categorised into (1) straight (2) zigzag and (3) spiral/helical. It is worth noting
that the second type – zigzag trajectories – are instable for bubbles larger than
2mm. Thus they are often found to switch to a spiral/helical type, as it is
shown in figure 7.4b.
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(a) bubble wake pat-
terns [8].

(b) bubble rising trajectory
[11].

Figure 7.4: Bubble wake and rise trajectories at different bubble
(equivalent) diameters.

7.2.2. Species Transfer

Extensive research aiming at the associated species transfer across the interfaces in
bubbly flows dates back to the early 60ies of the last century [12–19].

Herein, species transfer is commonly examined using several characteristic dimension-
less groups, out of which the bubble Reynolds number is a pivotal one. Furthermore,
the Schmidt number Sc ≡ νl/Dl and the Sherwood number Sh ≡ βldb/Dl are utilized
in order to describe the ratio of momentum to species diffusivity and overall species
transfer to pure diffusive species transfer, respectively. Additionally, the interfacial
concentration jump of a transferred species i must be taken into account. It is
common practice to do so by means of a simple distribution relation known as Henry’s
law, which reads ci;I,φ = He · ci;I,ϕ, where He denotes a (constant) distribution
coefficient that mostly differs from unity due to different solubilities of species i
within the phases ϕ compared to phase φ. This situation is depicted schematically
in figure 7.5 for a spherical bubble.

It is emphasized that the interplay of species transfer and bubble (fluid) dynamics is
still a topic of ongoing research and not fully understood. However, as in many fields
of engineering, dimensionless correlations have proven to be reliable in most cases
of practical interest. For the bubbles considered within this study two Sherwood
correlations are found to be applicable for further quantitative validation of species
transfer at high Schmidt numbers, namely

Shl = 2 + 9.45 · 10−4 ·Re1.07
b Sc0.888

l (7.1)
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gas bubble

bubble surface

liquid

Figure 7.5: Schematic illustration of a characteristic concentration
profile across a bubble surface for a transfer species.

according to Brauer [20] and

Shl = 2 + 1.5 · 10−2 ·Re0.89
b Sc0.7

l (7.2)

according to Hong and Brauer [21]. For correlation 7.1 the validity range of 1 ≤
Reb ≤ 5000 is rather broad, while correlation 7.2 is only valid for bubbles of dynamic
shape and thus depends on the material properties of the system. The validity range
can only be stated approximately: 3.73Mo−0.209 . Reb . 3.1Mo−0.25 according to
Brauer [20], which means a range of 610 . Reb . 1390 for the air/water system
(Mo ≈ 2.5 · 10−11). However, it has to be mentioned, that there is some scope of
uncertainty: both the quantities involved within the dimensionless groups and the
parameters within the dimensionless correlations constituted thereof are subject to
this uncertainty. Their evaluation significantly depends on experimental conditions,
which must ensure reproducibility, e.g., a constant temperature and constant bubble
sizes, for instance. In effect, the results must be considered as an expected estimate
rather than an exact prediction.

7.3. Mathematical Model and Governing Equations

Free-surface flows are incompressible flows possessing multiple distinct, immiscible
fluids separated by interfaces of arbitrary complex morphology, across which fluid
properties vary by orders of magnitude [22]. These characteristics generally make
it challenging to follow the interface within a free-surface flow using Computational
Multi-Fluid Dynamics (CMFD) methods.

Many approaches have evolved aiming at both a flexible and an accurate detailed
simulation of bubbly flows. Methods cover front or interface tracking and interface
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capturing methodologies, such as Front-Tracking, Level-Set and Volume-Of-Fluid
methods as well known and widely employed approaches [22–24]. However, the
Volume-Of-Fluid (VOF) methods have turned out to be an appropriate choice for the
simulation of free-surface flows due to their robustness and flexibility, their simplicity
and straightforward implementation along with inherent mass conservation when
simulating morphological changes (coalescence and breakup) in two-phase systems.
However, there are some disadvantages of the VOF approach as well: since the origi-
nal VOF methods approximate the interface employing a geometrical reconstruction
algorithm that ensures a sharp interface that is captured within one computational
cell, it makes them not easily applicable on arbitrary polyhedral meshes where geo-
metric reconstruction procedures turn out as very demanding. Therefore, so-called
pseudo-VOF methods have emerged in both proprietary and Open Source CFD soft-
ware (i.e., the Free-Surface Model in ANSYS CFX® or interFoam in OpenFOAM®).
They rely upon continuum advection schemes which compress the interface in order
to remain it as sharp as possible either using compressive discretisation schemes (as
HRIC, CICSAM, inter-Gamma [25–29]) or employing a counter-gradient convective
term [30–35] both of which are counter-acting the numerical diffusion that evolves
from the algebraic treatment of the interface [22]. A main difficulty when dealing with
pseudo-VOF methods is their accuracy and reliability of the underlying numerical
schemes to ensure the constraint of a sharp interface: in contrast to a sharp interface
representation, the interface is often blurred towards a more diffuse one, which is then
inherently assigned a certain width of several cells thickness. More generally, the
choice of an appropriate VOF approach is mainly about the balance of its simplicity
and robustness and its accuracy.

This work employs a pseudo-VOF approach based on interFoam (OpenFOAM-1.5-
dev), which, however, was considerably modified to meet the requirements as set out
in section 7.4.

Addressing the numerical simulation of species transfer across fluid bubble interfaces,
again considerable efforts have been devoted to gather insights both experimentally
[12–19] and theoretically [5,20,36–47]. However, the majority of theoretical work was
based upon approximate solutions for either simplified flow conditions (e.g., Stokes
regime) or simplifying assumptions concerning the bubble’s shape (e.g., spherical
or ellipsoidal). Later more sophisticated approaches have evolved focusing both on
purely physical [48–55] and reactive species transfer [56–62]. Conceptual approaches
cover front-tracking [10,56,57,59,63–73], level-set [54,58,74,75] and Volume-Of-Fluid
methods [53,60,61,76–81]. However, they mainly suffer from numerical difficulties due
to both the steep interfacial concentration gradient at high Schmidt numbers (that
needs to be resolved down to the Batchelor length scale) and a sharp concentration
jump at high Henry coefficients occurring at the interface due to different species
solubilities.
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In this work a continuum modeling approach for solubility and species transfer is
employed, in order to overcome these problems for interface capturing methods.
This approach enables both VOF and pseudo-VOF approaches to deal with species
transfer across fluid interfaces. This is accomplished by converting Henry’s law into
a solubility flux over the fluid interface, i.e., by conveying the concentration jump
into a continuous effect being spread over interfacial cells. Note in passing, that this
is a well-established practice in VOF methods for the interfacial momentum jump
due to the surface tension force at free-surfaces known as Continuous-Surface-Force
(CSF) Method [82]. We developed an analogous continuous approach for species
transfer across fluid interfaces being treated by interface capturing approaches. The
resulting model is entitled Continuous-Species-Transfer (CST) Method. The CST
method is capable of reproducing the species flux across fluid interfaces evolving in
a free-surface flow, where chemical species is transferred across a fluid interface of
arbitrary morphology.

In the remainder, we will consider the mathematical model and the governing equa-
tions derived thereof that enables the three-dimensional numerical simulation of both
the bubble dynamics (VOF method, subsection 7.3.3) and the interfacial species
transfer (CST method, subsection 7.3.4) occurring in bubbly flows as they are found
in bubble columns, for instance.

7.3.1. Conceptual Approach and Methodology

In the following a mathematical model framework for the fluid dynamics of free-
surface flows comprising two incompressible Newtonian fluids is presented.

The concept of both the solver dealing with the free-surface and the CST method
capturing the species transfer across it, is based on the so called immersed interface
concept [83]. In this concept the interfaces between the two immiscible fluids are
considered immersed or embedded into the computational domain. Hence, the
resulting set of governing equations is valid throughout the entire domain including
the two phases present in the system (i.e., the gas/bubble and liquid phase) and the
interface separating them from each other.

In order to arrive at such a set of equations we start from first principles – that
are the local instantaneous conservation equations valid within one phase. We
apply the conditional volume-averaging technique [84–86]: the equations are first
’conditioned’ for phase discrimination by multiplication with the phase-indicator or
existence function for each phase ϕ

Iϕ (x, t) ≡
{

1 phase ϕ present at (x, t)
0 otherwise,

(7.3)
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and secondly volume-averaged. This reads for an arbitrary general flow quantity Φ,
that might represent any physical property, scalar or tensor of any rank:

IϕΦ ≡ 1
V

∫
V
Iϕ (x + η, t) Φ (x + η, t) dxη. (7.4)

The averaging is done over a spatially and temporally invariant control volume V ∈ Ω,
the centroid of which is located at x. The relative position vector η is used to locate
any point within V . Henceforth, the conditioned flow quantity IϕΦ might also be
denoted as Φϕ.

Subsequently summing up the conditional volume-averaged conservation equations
for both phases yields the desired set of governing equations that suffices the immersed
interface concept and is valid in the entire domain possessing the two phases –
including the (embedded) interfacial structures separating them from each other.

Note, that this approach has been successfully applied to various two-phase systems,
i.e., by Weller [85] for modeling turbulent flames or by Jasak [86] for modeling sea
ice dynamics. In its essence this approach is a simple extension of that one applied
by Dopazo [84] for turbulent single-phase flows. The analytical methods developed
therefore can now be applied in a very general manner for two- or multiphase
systems, if the phase-indicator function is introduced for phase discrimination and
the interfaces separating the system’s phases are allowed to propagate.

By use of this technique the volume-averaged indicator function itself can be inter-
preted most intuitively as the volumetric phase fraction within the control volume.
In the case of Φ = 1 it follows from equation 7.4:

Iϕ (x, t) ≡ αϕ


= 1 within phase ϕ,
∈]0, 1[ within the interfacial region,
= 0 within phase φ.

(7.5)

As can be seen, by volume-averaging the interface as an intermittent entity (i.e.,
represented by a surface separating the two phases ϕ and φ) has become an inter-
facial transition zone within the computational domain, representing the immersed
interface. Basically this is an interfacial region of finite width, over which material
and transport properties are found to vary smoothly but rapidly towards the values
pertaining to the pure phases. This conceptual transfer is depicted in figure 7.6
for both the local-instantaneous (7.6a) and the conditional volume-averaged (7.6b)
situation.

As will be seen in the remainder, the local instantaneous conservation equations
hold spatial and temporal derivatives of their dependent variables. Hence, let us
have a detailed look at these derivatives in the same manner. For generality, this is
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(a) physical domain Ω
(local-instantaneous).

(b) computational domain
(volume-averaged).

Figure 7.6: Conceptual approach of the conditional volume-averaging
procedure and the immersed interface concept.

again done for an arbitrary general quantity Φ being conditioned and subsequently
averaged.

∇IϕΦ = ∇
(
IϕΦ

)
= ∇Φϕ = ∇

(
αϕ Φϕ

)
. (7.6)

Similarly, for a temporal derivative of a conditioned quantity Φϕ, it is

∂IϕΦ
∂t

= ∂ IϕΦ
∂t

= ∂Φϕ

∂t
= ∂αϕ Φϕ

∂t
. (7.7)

By introducing a short-hand notation for the ϕ-sided surface average ©Φϕ
of the

property Φ as the surface integral per unit volume divided by the surface area per
unit volume,

©Φϕ
≡ 1
Σ

lim
δVϕ→0

1
δVϕ

∫
SI(x, t)

Φ(x, t)dS , (7.8)

where

Σ ≡ lim
δV→0

1
δV

∫
SI(x, t)

dS , (7.9)

we are able to consider conditioned derivatives of the arbitrary quantity Φ rather
than derivatives of the conditioned quantity Φϕ. It follows expediently:

Iϕ∇Φ = ∇
(
αϕ Φϕ

)
−¬ΦnI

ϕ
Σ, (7.10)
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Iϕ∇•Φ = ∇•
(
αϕ Φϕ

)
−­Φ•nI

ϕ
Σ, (7.11)

and

Iϕ
∂Φ
∂t

= ∂αϕ Φϕ

∂t
+ ³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µΦI,ϕnI•UI,ϕφΣ, (7.12)

where UI,ϕφ = UI,ϕ denotes the interfacial velocity, in the absence of mass transfer
due to condensation or evaporation (UI,n = 0), and nI (short-hand notation for
nI,ϕφ ) represents the interfacial unit normal vector pointing from phase ϕ into phase
φ (and vice versa for nI,φϕ , since nI,ϕφ = −nI,φϕ ).

7.3.2. Assumptions

The so-called one-field assumption (mixture model) is utilized, where each phase
moves with the centre-of-mass velocity U sharing one pressure field p, such that

U ≡ Uϕ = Uφ = ©Uϕ
and p ≡ pϕ = pφ. (7.13)

Of course, validity and fidelity of such kind of modeling approach will highly depend
on an

1.) appropriate local resolution of the interface morphology, that is the local inter-
face normal nI and its curvature κI and an

2.) appropriate local resolution of the boundary layer at the interface.

Otherwise, either the constraint of an adequate interface representation characterized
by a rapid (but still smooth) change of phase properties as density and viscosity is
violated, or the one-field assumption becomes inappropriate since the phase velocities
will differ from the centre-of-mass velocity giving rise to some interfacial drift or
phase-slip velocity.

7.3.3. Bubble Dynamics – Volume-of-Fluid Method

Governing Equations

The governing equations covering the fluid dynamics of the two-phase system under
consideration comprise the conditional volume-averaged conservation equations of
mass (continuity), momentum and the volumetric phase fraction. The technique of
conditional volume-averaging is pointed out in detail in 7.A and will be utilized as
well for the conservation equation of chemical species for the derivation of the CST
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method. Hence, the conditional volume-averaged governing equations covering the
fluid dynamics are just stated here. The continuity equation reads

∇•U = 0 (7.14)

ensuring mass conservation. Further, the momentum equation can be written as
∂ρU
∂t

+∇• (ρUU) = −∇p+∇•τ + fg + fσ, (7.15)

and the volumetric phase fraction equation as
∂αϕ
∂t

+∇• (Uαϕ) +∇• (Urαϕ(1− αϕ)) = 0. (7.16)

Note in passing, that the relative velocity Ur ≡ Uϕ − Uφ clearly is zero for
the adopted mixture model. However, as set out in the remainder (cf. pg. 195)
Ur is modelled as compressive velocity Uc in order to maintain a sharp interface
representation while loosing its physical significance.

τ represents the viscous stress tensor, which reads for an incompressible Newtonian
fluid τ = −µ

(
∇U +∇UT

)
. f denotes volumentric momentum sources due to gravity

(subscript g) and interfacial surface tension (subscript σ). αϕ is the volumetric phase
fraction pertaining to one phase while the second can be evaluated to (1−αϕ), since
the sum needs to be equal to unity in a two-phase system.

For comprehension it is important to note, that equation 7.16 is the conditional
volume-averaged equivalent of the so-called topological equation: ∂Iϕ

∂t +UI•∇Iϕ = 0,
since Iϕ as a genuine phase characteristics can be considered as a Lagrangian invariant
and thus suffices this transport equation. Physically this simply states the fact that
the interface travels with the local interfacial velocity UI , thus representing the
temporal evolution of the interfacial structure (morphology) in a free-surface flow.
Assuming ©Uϕ

= U then leads to the volumetric phase fraction equation according
to equation 7.16.

Furthermore, note that the governing equations 7.14 to 7.16 are commonly found
to constitute a VOF model and are well-established. However, though they are
commonly claimed valid, they are indeed the result of a consistent derivation starting
from local instantaneous conservation equations for mass and momentum and the so-
called topological equation, by means of which interfacial propagation is taken into
account.

Models

The methodology of conditional volume-averaging employed for derivation causes
terms stemming from averaging that are a priori unknown and cause the system of
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governing equations to be unclosed. Hence, modeling of these terms is necessary in
order to arrive at a closed set of governing equations.

Buoyancy Force and Viscous Stress Model The density ρ and viscosity µ in
the momentum equation 7.15 must be considered as mixture quantities within the
interfacial region, that generally need appropriate modeling. As the mixture density
ρ might be seen as a volumetric mass concentration, modeling is simply accomplished
using the volumetric phase fractions:

ρ =
∑
k=ϕ,φ

αk ρ
k. (7.17)

However, the issue of correct viscous stress modeling at fluid interfaces – e.g., correct
capturing of the viscosity term within τ = −µ

(
∇U +∇UT

)
at the free-surface – is

a quite important one, though not being adressed often in the literature dealing with
the VOF approach: it is common practice to use a arithmetic mean as µ = ∑

ϕ αϕ µ
ϕ

for the mixture viscosity – as being done for the mixture density. However, being
confronted with free-surface flows possessing gross and abrupt changes of the viscosity
across the interface the correct evaluation of µ at the interface (i.e., the interfacial
viscosity) is crucial for reproducing the correct free-surface dynamics in numerical
simulations. Simply using a arithmetic mean actually causes an artificial (increased)
acceleration of fluid elements in the lighter phase which yields too high velocities due
to an unphysical viscous term ∇•

(
µ
(
∇U +∇UT

) )
[22].

In order to employ the correct mixture viscosity, µ must be evaluated consistent with
its discretization in ∇•

(
µ
(
∇U +∇UT

))
as µf (meaning at the cell faces rather

than at the cell centres). Moreover, according to Kothe [22], one must account for
the relative interface/cell-face orientation:

µf = ηfµ
s + (1− ηf )µp, (7.18)

where ηf ≡ |n̂ϕ,f •n̂S,f | with n̂ϕ,f =
(
∇αϕ
|∇αϕ|

)
f

, n̂S,f = Sf
|Sf |

,

and µs =
∑
k=ϕ,φ

αk,f µ
k, µp =

 ∑
k=ϕ,φ

αk,f
µk

−1

. (7.19)

As can be seen, ηf represents an interpolation factor accounting for the interface/cell-
face orientation, and evaluating µf in the limits of a harmonic mean µs (ηf → 1, serial
connection of viscous resistances [22]) and a arithmetic mean µp (ηf → 0, parallel
connection of viscous resistances [22]).
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7.3. Mathematical Model and Governing Equations

Interfacial Surface Tension Model The influence of surface tension to the momen-
tum needs further attention, as the interface is represented by an interfacial transition
region of a finite width. However, the nature of the surface tension force is that of a
surface force imposing a momentum jump at the interface surface.

Thus, in order to be consistent, the so-called Continuous-Surface-Force (CSF) method
according to Brackbill et al. [82] is adopted. This approach reads:

fσ = σ©κ∇αϕ, with ©κ = −∇•
(
∇αϕ
|∇αϕ|

)
, (7.20)

where σ denotes the surface tension which is assumed to be constant. I.e., phenomena
rendering the surface tension variable (e.g. Marangoni effects) are neglected.

Phase Relative Velocity Model Another issue to be addressed when considering
pseudo-VOF methods, is that both accuracy and reliability heavily rely upon the
numerical approach employed to ensure a sharp interface representation – counter-
acting numerical diffusion.

Note that the third term in the volumetric phase fraction equation 7.16 does represent
a convective transport term being different from zero only in the interfacial transition
region due to αϕ (1− αϕ). However, the phase relative velocity Ur needs to be
modeled as the VOF model has been derived under the one-field assumption and
thus its governing equation only holds one mixture momentum.

According to Weller [30] and Olsson [33–35] this modeling can be accomplished
appropriately1 (in a conservative and bounded manner) by modeling this term such
that it ensures a sharp interface. For this the phase relative velocity Ur is considered
as compressive velocity Uc being oriented normal to the interface:

Uc ≡ min [cα|U|,max(|U|)] ∇αϕ
|∇αϕ|

, where usually 1 ≤ cα ≤ 4. (7.21)

By this approach the third term in the volumetric phase fraction equation 7.16
becomes a compressive term acting counter-gradient with respect to the volumetric
phase fraction – that is perpendicular to the interface without biasing the free-surface
flow at all but ensuring a sharp interface representation.

1 Indeed the relative velocity Ur approaches zero when increasing the mesh resolution sufficiently.
However, modeling Ur in an other way provides an avenue to ensure a sharp interface. It shall
be emphasized that doing so results in a model approach that is motivated purely numerically.
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7. Species Transfer across Fluid Interfaces

7.3.4. Species Transfer – Continuous-Species-Transfer (CST)
Method

In order to derive a species transport equation that is valid throughout the entire
domain and accounts for species transfer across the interface(s) in a free-surface flow
scenario, we start from first principles: the local instantaneous conservation equation
of an arbitrary chemical species i being valid within a phase ϕ (bulk) reads

∂ci
∂t

+∇• (ciU) = ∇• (Di∇ci) +Ri within Ωϕ(t). (7.22)

Its corresponding jump conditions are

‖ (−Di∇ci) •nI‖ = 0 and ‖ci‖ = ci;I,ϕ · (1−He)⇔ He = ci;I,φ
ci;I,ϕ

, (7.23)

where ‖·‖ denotes an interfacial jump as ‖f‖ = fI,ϕ−fI,φ. Hence, the latter equation
represents Henry’s law.

Conditioning and volume-averaging of equation 7.22, eventually yields2:

Iϕ
∂ci
∂t

+ Iϕ∇• (ciU) = Iϕ∇• (Di∇ci) + IϕRi (7.24)

⇔ ∂αϕ ci
ϕ

∂t
+∇•

(
αϕ ci

ϕ Uϕ
)

= ∇•
(
αϕDi

ϕ∇ ciϕ
)

+ αϕRi
ϕ

− ³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µDi∇ci•nI,ϕφ
ϕ
Σ. (7.25)

In the remainder, we will neglect chemical reactions: thus, Ri
ϕ = Ri

φ = 0.

Now, in order to employ the immersed interface concept we sum up for both phases ϕ
and φ present in the system. Note that the surface integral in the resulting governing
equation, i.e., the sum over the phases of the last term on the r.h.s. of equation 7.25,
equals zero due to the continuity of species fluxes across the interface.

In order to arrive at the desired governing equation solely in terms of mixture
quantities, we define a volumetric mixture concentration as

Ci ≡ αϕ ciϕ + αφ ci
φ. (7.26)

However, when summing up for both phases ϕ and φ, this only works for the terms
on the l.h.s. of equation 7.25, while the first term on the r.h.s. of equation 7.25
needs further analysis in order to finally formulate solely in terms of the mixture
2 For details on the conceptual approach of conditional volume-averaging see 7.A

196



7.3. Mathematical Model and Governing Equations

concentration. This term might be split up more conveniently into (a) bulk and
(b) interfacial contributions according to∑

k=ϕ,φ
∇•
(
αkDi

k∇ cik
)

=
∑
k=ϕ,φ

∇•
(
∇
(
Di

k
αk ci

k
))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(a)

−
∑
k=ϕ,φ

∇•
(
Di

k
ci
k∇αk

)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

(b)

.

(7.27)

(a) Without loss of generality, the molar mixture concentration Ci might be defined
expediently as well as

Ci ≡
Di

ϕ
αϕ ci

ϕ + Di
φ
αφ ci

φ

αϕDi
ϕ + αφDi

φ
, (7.28)

where the denominator could be denoted shorter as molecular diffusivity Di ≡
αϕDi

ϕ + αφDi
φ – similar to µ, the momentum diffusivity.

This variant enables us to rewrite the bulk term (a) in equation 7.27 solely in
terms of the mixture quantities Ci and Di:∑

k=ϕ,φ
∇•
(
∇
(
Di

k
αk ci

k
))

= ∇• (Di∇Ci) +∇• (Ci∇Di) . (7.29)

However, while the above procedure leads to the known diffusive terms being
valid for species transport within the bulk, equation 7.28 in a strict sense can
only be regarded as a model, which requires validation in order to assess its
accuracy (cf. 7.B).

(b) Noting that ∇αϕ = −∇αφ the interfacial term (b) reads

∇•
[(
Di

ϕ
ci
ϕ − Di

φ
ci
φ
)
∇αϕ

]
.

Making use of Henry’s law (consistently as an averaged jump condition: ciϕ =
He · ciφ) at the interface, this becomes

∇•
[(

Di
ϕ − Di

φ

He

)
ci
ϕ∇αϕ

]
,

which may be rewritten in terms of Ci ≡ αϕ ciϕ + (1−αϕ) ciφ by using Henry’s
law again, which yields ciϕ = Ci

αϕ+(1−αϕ)/He . Hence, it is

∑
k=ϕ,φ

∇•
(
Di

k
ci
k∇αk

)
= ∇•

[(
Di

ϕ − Di
φ
/He

αϕ + (1− αϕ)/He

)
Ci∇αϕ

]
. (7.30)
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Thus, the conditional volume-averaged transport equation for an arbitrary species i
reads in its final form

∂Ci
∂t

+∇• (CiU) = ∇• (Di∇Ci) +∇• (Ci∇Di)

−∇•
[(

Di
ϕ − Di

φ
/He

αϕ + (1− αϕ)/He

)
Ci∇αϕ

]
. (7.31)

Note that this governing equation 7.31 is – as initially claimed – valid throughout the
entire computational domain (including the interface) accounting for both convective
and diffusive species transport and interfacial species transfer for diffusivities and
solubilities that are allowed to severly differ within the phases under consideration.

7.4. Implementation

For this study OpenFOAM® (Open Field Operation And Manipulation) has been
employed. OpenFOAM is a flexible and efficient C++ library for the customization
and extension of applications (solvers and utilities) and models manipulating and
operating on scalar, vectorial and tensorial fields [87–89]. Thus, OpenFOAM is
suitable to handle all kind of continuum problems.

OpenFOAM is based on an unstructured mesh formulation with an collocated cell-
centered variable arrangement featuring unstructured boundary-fitted meshes (in-
cluding topological mesh changes) for arbitrary complex geometries. In its essence,
OpenFOAM provides numerical methods for the discretization of partial differential
equations along with solvers for the corresponding numerical solution of the resulting
system of algebraic equations. I.e., differential operators as ∇•,∇2, ∂∂t can be invoked
using two main tensor-derivative namespaces: the fvm (finiteVolumeMethod) names-
pace and the fvc (finiteVolumeCalculus) namespace. E.g., the above differential op-
erators correspond to fvm::div(), fvm::laplacian(), fvm::ddt() or alternatively
fvc::div(), fvc::laplacian(), fvc::ddt() in OpenFOAM. The fvc functions
perform an explicit evaluation of predetermined data by mapping from one field to
another, while the fvm functions construct appropriate matrices using the finite-
volume discretization, which, in turn, enables to create entire matrix representations
of differential equations and their implicit numerical solution. For this purpose,
equation objects have been defined: fvMatrixScalar, fvMatrixVector. These hold
the matrices that represent the equations and handle the numerical solution.

Moreover, to represent fields, there exist both basic tensor field classes and ge-
ometric tensor field classes: e.g., scalarField, vectorField, tensorField and
volScalarField, volVectorField, volTensorField. Note, that the latter three
classes are referred to as geometric tensor field classes as they contain a reference
to the mesh – corresponding to the control volumes constituting the computational
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domain. Furthermore, they comprise boundary information, previous time steps
necessary for the temporal discretization, and SI dimension set information. Ad-
ditionally, surfaceScalarField, surfaceVectorField and surfaceTensorField
hold data associated to fields at the surfaces of control volumes.

Now addressing multiple chemical species, we extended the present OpenFOAM
solver interFoam using a PtrList<T> C++ template: PtrList<volScalarField>
declares a list of pointers to a number of volumetric scalar fields in memory. This
enables to create and initialize all required fields and quantities as provided in Source
Code 7.1. Note that the number of created fields conveniently corresponds to the
number of field data files provided in the initialization directory for each species.

�
1// Determine number of species concentration fields
2scalar n = 0;
3

4// Search for list of objects at startTime
5IOobjectList objects(mesh, "0");
6

7// Search list of objects for volScalarFields
8IOobjectList scalarFields
9(
10objects.lookupClass("volScalarField")
11);
12

13for
14(
15IOobjectList::iterator scalarFieldIter
16= scalarFields.begin();
17scalarFieldIter != scalarFields.end();
18++scalarFieldIter
19)
20{
21// Read field
22volScalarField field
23(
24*scalarFieldIter(),
25mesh
26);
27word fieldname = field.name();
28if( fieldname.find("C") == 0)
29{
30n++;
31}
32}
33Info<< "Number of Species = " << n << endl;
34

35// Create species concentration fields
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36PtrList<volScalarField> C(n);
37for(label i=0; i<C.size(); i++)
38{
39word fieldName = "C" + Foam::name(i);
40Info<< "Reading field " << fieldName << endl;
41

42C.set //−HM ’set or hook’ (OF−version dependent)
43(
44i,
45new volScalarField
46(
47IOobject
48(
49fieldName,
50runTime.timeName(),
51mesh,
52IOobject::MUST_READ,
53IOobject::AUTO_WRITE
54),
55mesh
56)
57);
58}
59

60// Read Henry coefficients associated to Species
61PtrList<dimensionedScalar> He(n);
62for(label i=0; i<He.size(); i++)
63{
64Info<< "Reading He"<<Foam::name(i)
65<< " coefficient for species " << i
66<< endl;
67He.set
68(
69i,
70new dimensionedScalar
71(
72twoPhaseProperties.lookup ("He" + Foam::name(i))
73)
74);
75}� �

Source Code 7.1: createFields.H.

The solution of the conditional volume-averaged species conservation equation 7.31
is then invoked at the end of the algorithm of interFoam as presented in Source Code
7.2.
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�
1for(label i=0; i<C.size(); i++)
2{
3volScalarField& Ci = C[i];
4dimensionedScalar& Hei = He[i];
5

6surfaceScalarField phiCi =
7(
8fvc::interpolate((Dl − Dg/Hei)/(gamma + (1 − gamma)/Hei))
9* fvc::snGrad(gamma)
10) * mesh.magSf();
11

12surfaceScalarField phiD =
13(
14fvc::snGrad(Dmolar)
15)*mesh.magSf();
16

17solve
18(
19fvm::ddt(Ci)
20+ fvm::div(phi, Ci, scheme)
21− fvm::laplacian(fvc::interpolate(Dmolar),Ci)
22− fvm::div(phiD, Ci, CScheme)
23+ fvm::div(phiCi, Ci, CScheme),
24mesh.solver("Ci")
25);
26

27Info<< " Min(C" << Foam::name(i) << ") = " << min(Ci).value()
28<< " Max(C" << Foam::name(i) << ") = " << max(Ci).value()
29<< endl;
30}� �

Source Code 7.2: cEqn.H.

Furthermore, we have adopted the adaptive mesh refinement (AMR) technique [90,91]
and a moving frame of reference (MFR) method [92]. The MFR technique ensures a
significant decrease of computational costs, since the computational domain can be
thought of moving along with the rising bubbles through the quiescent liquid. Beside
that, the numerical requirement of a sufficiently resolved mesh in the proximity of
the bubble surface is taken care of by AMR. This allows for capturing the details of
species transport and interfacial species transfer adequately. In order to fulfill the
requirement of a sufficient spatial resolution, we consider the Batchelor length scale
lB as a first measure for the required resolution. This length scale can be expressed
in terms of the Kolmogorov length scale lK : lB = lK/

√
Scl with lK ≡

(
ν3
l /ε
)0.25.

Assuming the specific energy dissipation ε, i.e., the work that is done by a bubble
while rising through a quiescent liquid, can be estimated according to ε ≈ U∞g,

201



7. Species Transfer across Fluid Interfaces

Line 1
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Fluid b
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Figure 7.7: Schematic illustration of the test case for species transfer
across a planar interface in a cube.

eventually the Batchelor length scale takes values of lB ≈ 1.5 µm for bubbles with
rising velocities of about 0.2 m

s .

7.5. Validation Studies

7.5.1. Species Transfer across a Planar Interface in a Cube
– Test Case I

For the purpose of proof-of-concept and preliminary validation, the first test case
to be considered simply comprises a cube with 1 cm edge length, the lower half of
which is filled with water, that is initially loaded with a transfer component. As such,
the lower phase serves as the phase to be stripped off a transfer component, while
the upper half is filled with air, that initially is pure – i.e., devoid of the transfer
component. The test case configuration is shown in figure 7.7.

The material properties are provided in table 7.1. As a preliminary study, transport
properties (i.e., the diffusion coefficients) have been depicted such that the transient
process of species transfer within the cube can be observed within an endurable time-
frame of about 1.2 s. The Henry coefficient has been set to He = 3. The Morton
number is Mo = 2.52 · 10−11.

In order to assess solely the quality of the CST method – that is governed by the
species transfer and solubility terms of the CST method (i.e., the r.h.s of equation
7.31) – the fluids are to be considered at rest. Therefore, no-slip boundary conditions
are imposed upon the walls of the cube. Wetting phenomena have been neglected,
e.g., the contact angle was assumed to be 90°. Consequently, the Neumann boundary
condition has been chosen for the species concentration equation. The mesh comprises
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Table 7.1: Material and transport properties.

air

density 1.122 kg
m3

dynamic viscosity 18.24 · 10−3 mPa s

diffusion coefficient 1 cm2

s
(a)

0.1916 cm2

s
(b)

water

density 998.2 kg
m3

dynamic viscosity 1 mPa s

diffusion coefficient 0.2 cm2

s
(a)

2.01 · 10−5 cm2

s
(b)

(a) test case I – species transfer across a planar interface
in a cube, Shl = 0.05

(b) test case II – species transfer across a deforming bubble
surface while rising through a quiescent liquid, Shl =
498.4

102 400 hexahedral cells, with 256 cells being used for the spatial discretization over
the cube’s height and 20 cells for each other direction.

Figure 7.8 shows the normalized species concentration profiles across the planar
interface within the cube. For comparison and in order to gather quantitative
insights, the results of the numerical solution using the CST method in OpenFOAM
were compared to the results gained from a one-dimensional model, the solution
of which can be considered exact due to the high temporal and spatial resolution
which has been adopted. These reference simulations were performed using Matlab®

v. 7.9 (R2009). A decent agreement is observed between the CST method and the
exact solution gathered by the one-dimensional reference model. Of course, a further
validation has been accomplished, through the course of which the model parameters
have been varied to more demanding extremes as well – appendix 7.B. However, the
results are still found to be in very good agreement.

7.5.2. Species Transfer across a Deforming Bubble Surface
– Test Case II

Figure 7.9 illustrates the corresponding configuration for the simulation of a single
bubble rising in a quiescent liquid. In this work the computational domain is ’moved’
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Figure 7.8: Quantitative comparison of normalized species
concentration profiles across a planar interface in a cube –
Exact reference solution (1D model) and numerical solution
(CST method). Measures taken along the center-line for
0.0 s ( ), 0.05 s ( ), 0.2 s ( ) and 0.8 s ( ), respectively..

along with a rising bubble using a MFR technique. For this reason, the size of the
computational domain is only in the range of several bubble diameters.

The material and transport properties are listed in table 7.1. Note that these values
refer to an air-water system, i.e., an air bubble in water and oxygen being the dilute
species transferred from the air-bubble into pure water. The Henry coefficient has
been set appropriately to He = 33. The validation study has been performed for
bubbles of different sizes. Three simulations for bubbles of 2-6mm diameter, which
is in the industrial relevant range, are performed.

For a qualitative consideration, we have extracted the iso-surfaces of the oxygen
concentration around an air bubble while rising through a quiescent water – as
shown in figure 7.10 for the concentration wakes of a 6mm bubble. Results were
compared with experimental results exposing the concentration wake by laser-induced
fluorescence (LIF). In doing so, a reasonable good agreement regarding both bubble
shape and wake shape has been observed. In order to assess quantitative measures,
two basic features of reactive bubbly flow are subject to validation: (1) bubble
dynamics and (2) bubble species transfer. The figures include experimental results
of Duineveld and Schlüter et al. [93, 94] as well as numerical results of Bothe et
al. [95, 96].
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Figure 7.9: Schematic illustration of the test case for species transfer
across a deforming bubble surface while rising through a
quiescent liquid; cubic domain with edge length l = 7 d.

(1) Figure 7.11 shows the terminal rising velocity taken from the simulation results.
The rising velocity is around 20 cm

s as one would expect for these systems. The
rising velocities were found to coincide over different bubble diameters with
the same undulating characteristics as exposed by the underlying experimental
velocity data. Figure 7.12 depicts the trajectory of a 4mm bubble in top view.
The trajectory expands over 0.6 · 10−2 m in both directions perpendicular to
the bubble’s rising direction. Moreover, different bubble trajectory types (i.e.,
straight, zigzag and spiral/helical) and shape regimes (spherical and ellipsoidal)
have been observed. This indicates (at least) that the major features of the
bubbly flow dynamics – form/shape oscillation and wake phenomena – are
captured correctly. Hence, the conclusion might be drawn that both results are
in very good agreement with experimental data.

(2) Extracting the integral overall mass transfer coefficient from the numerical data
enables us to compare the numerical results with the vast variety of correla-
tions available in literature. This is accomplished by examining the temporal
evolution of the normalized bubble mean concentration. Taking into account
Henry’s law, the integral overall mass transfer coefficient kl is determined.
Consequently, this yields the desired Sherwood number Sh = βldb/Dl by using
the so-called ’overall concept’, that is the overall mass transfer resistance is
presumably laid into the liquid phase. Hence, it is βl ≈ kl. Two Sherwood
correlations (cf. equations 7.1 and 7.2) have been used for quantitative com-
parison. The bubble Reynolds numbers are Reb = 461.8, Reb = 881.0 and
Reb = 1239.5 for the 2, 4 and 6mm bubbles under consideration within this
study. The results are listed table 7.2.
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(a) Iso-surfaces
(0.005, 0.01, 0.025)
of normalized
oxygen concen-
tration in the
wake of a 6mm
air bubble while
rising through a
quiescent water.

(b) Oxygen con-
centration wake
exposed by laser-
induced fluo-
rescence (LIF)
measurements –
decreasing bright-
ness indicates
an increasing
oxygen concen-
tration [18]..

Figure 7.10: Oxygen concentration wake behind a rising 6mm bubble.
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Figure 7.11: Quantitative comparison of terminal rising velocities of
single bubbles at different (equivalent) diameters rising in
a quiescent liquid – results of numerical simulation and
experimental data.
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Figure 7.12: Quantitative comparison of the trajectory (top view) of a
4 mm bubble rising in a quiescent liquid – results of
numerical simulation and experimental data.

207



7. Species Transfer across Fluid Interfaces

Table 7.2: Quantitative comparison of Sherwood numbers –
experiments (Sherwood correlations) and numerical
simulations (CST method).

Sherwood numbers acc. to
bubble diameter

2mm
(Eo=0.54)

4mm
(Eo=2.14)

6mm
(Eo=4.82)

CST method 221.3 514.2 792.0

Brauer [20] 169.0 335.3 482.3

Hong & Brauer [21] 275.2 487.4 659.7

Evidently, table 7.2 indicates again a good agreement with reference values, al-
lowing the conclusion to be drawn that the CST method is capable of capturing
species transfer in (gas-liquid) free-surface flows – as proved by means of bubbly
flows as example. However, there is some scope of uncertainty regarding the
values of the Sherwood numbers: these clearly show some deviation even when
underlying established Sherwood correlations. However, the CST method is
found to deliver values within the same confines as the Sherwood correlations.
Thus, the CST method might be justifiably considered to be applicable for
the range of transport and material properties that are typically found in the
chemical and process industries, where species transfer plays a major role.

7.6. Summary

A new numerical approach – entitled Continuous-Species-Transfer (CST) Method –
is presented in this paper. The CST method is capable of simulating species transfer
across fluid interfaces of arbitrary morphology as they are typically dealt with in
interface capturing (volume tracking) methods as the VOF method.

The derivation starts from first principles, that is the conservation equation for an
arbitrary chemical species. By use of conditional volume-averaging and the immersed
interface concept, we arrive at a final form which comprises terms accounting for
both species transport within the phases and species transfer between the phases
at different diffusivities and solubilities. The resulting governing equation is valid
throughout the entire computational domain holding the volumetric molar species
concentration as a mixture quantity.

Validation studies show a decent agreement of the obtained results compared to both
analytical and exact numerical reference solutions as well as to experimental results.
By examining the oxygen transfer of a single (air) bubble rising in a quiescent liquid,
the CST method was found to be applicable to a wide range of material and transport
properties.

208



Appendix

Figure 7.13: Control volume – Two-phase flow.

7.A. Conceptual Approach of Conditional Volume-Averaging

Local Instantaneous Conservation Equation and Interfacial Jump Condi-
tion

To start from the first principles, we consider an arbitrary control volume V , that is
spatially fixed within an Eulerian framework and arbitrary in its shape. Over this
control volume balances shall be formulated in the following. In order to extend
the consideration towards a two- or multiphase case, it is instructive to immerse an
assemblage of interfaces separating the phases of the system from each other within
the control volume V (immersed interface concept) as illustrated in figure 7.13. Thus,
the system comprises several phase volumes Vk ⊆ V

⋃
k=ϕ,φ,... Vk, each possessing an

interface SI separating it from its neighboring phase. In consequence, the control
surface S is composed of phase surfaces Sk ⊆ S

⋃
k=ϕ,φ,... Sk that arise where the

control volume V cuts the phase volumes Vk.

In general, more phases – i.e., a third phase κ – might be present within the control
volume. However, without loss of generality3 these will be dropped in the remainder
of this work when discussing the interaction of two arbitrary phases ϕ and φ. In the

3 One or more additional phases would be treated analogously without imposing additional com-
plexity.
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following, the first phase, i.e., phase ϕ, shall be examined, whereas the latter phase
φ is considered as neighboring phase.

For generality, we further use a generic arbitrary transport quantity Φ in the follow-
ing, which will be substituted by the molar species concentration at the end of our
derivation. Let Φ(x, t) be an arbitrary general intensive physical quantitity, e.g. a
fluid property (scalar or tensor of any rank) being transported and thus distributed
within a spatio-temporal domain. Note that the transport quantity Φ represents the
intensive equivalent of extensive balance quantities, e.g., mass, momentum, energy
or chemical species, on the basis of which balance equations are stated commonly.
Owed to the presence of two or more phases within the control volume V , it is
necessary to distinguish among the respective contributions of each of the phases to
the transport quantity Φ. For this purpose all balances have to be considered over
the phase surfaces Sk and the phase volumes Vk – with k ∈ [ϕ, φ]. Consequently, the
overall balance equation for Φ within the control volume V reads:

∑
k=ϕ,φ

(
d

dt

∫
Vk(t)

ρΦdV
)

=−
∑
k=ϕ,φ

∫
Sk(t)

nk• (ρΦU) dS

−
∑
k=ϕ,φ

∫
Sk(t)

nk• (−ΓΦ,d∇Φ) dS

+
∑
k=ϕ,φ

∫
Vk(t)

SΦ (Φ) dV

+ 1
2
∑
k=ϕ,φ

∑
j=ϕ,φ

(1− δjk)
∫
SI,jk(t)

SΦ,I (Φ) dS, (7.32)

with the last term on the r.h.s. of equation 7.32 representing a generic coupling
interfacial source term, and the first three terms holding the already introduced bulk
(phase interior) contributions within the phases ϕ and φ, respectively.

Next, Leibniz’ and Gauss’ theorem are utilized for the temporal and spatial term,
respectively. This enables to interchange the volume integral with the temporal
derivative in the temporal term and to transform the surface integrals into volume
integrals in the spatial terms. E.g., for phase ϕ, it is:

d

dt

∫
Vϕ(t)

ρΦdV =
∫
Vϕ(t)

∂

∂t
(ρΦ) dV

+
∫
SI,ϕφ(t)

nI,ϕφ •UI,ϕφ (ρΦ) dS, (7.33)
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and ∫
Sϕ(t)

nϕ• (ρΦU) dS =
∫
Vϕ(t)

∇• (ρΦU) dV

−
∫
SI,ϕφ(t)

nI,ϕφ • (ρΦU) dS and (7.34)∫
Sϕ(t)

nϕ• (−ΓΦ,d∇Φ) dS =
∫
Vϕ(t)

∇• (−ΓΦ,d∇Φ) dV

−
∫
SI,ϕφ(t)

nI,ϕφ • (−ΓΦ,d∇Φ) dS. (7.35)

Hence, the balance equation 7.32 can be compacted as

0 =
∑
k=ϕ,φ

∫
Vk(t)

[
∂

∂t
(ρΦ) +∇• (ρΦU)−∇• (ΓΦ,d∇Φ)− SΦ (Φ)

]
dV

− 1
2
∑
k=ϕ,φ

∑
j=ϕ,φ

(1− δjk)
∫
SI,kj(t)

[ρΦ (U−UI,kj) •nI,kj − (ΓΦ,d∇Φ) •nI,kj + SΦ,I ] dS

(7.36)

As equation 7.36 is valid for arbitrary phase volumes Vk and arbitrary configurations
of phase interfaces SI,ϕφ within V , the two addends and therein the integrands can be
set to zero interchangeably. Thus the local instantaneous generic transport equation
can be deduced from the first integrand (representing the bulk phase contributions).
I.e., for phase ϕ it is stated

∂ρΦ
∂t

+∇• (ρΦU)−∇• (ΓΦ,d∇Φ)− SΦ (Φ) = 0, (7.37)

as it is the well-known outcome for the single phase case. However, there is always
a coupling with (at least) another transport equation of the same type due to the
presence of a neighboring phase φ. Hence interfacial jump conditions have to be
specified from the second addend of equation 7.36 in order to close the system.
Note that the generic condition as set out in the second addend of equation 7.36
is independent of the particular choice of the phases ϕ and φ, respectively. ϕ and
φ are interchangeable, i.e., nI,ϕφ = −nI,φϕ . Hence, this symmetry can be utilized
to simplify. Introducing a jump notation, where ‖ · ‖ shall denote a jump across the
interface SI as ‖f‖ ≡ fI,ϕ − fI,φ, the second addend in equation 7.36 reveals the
generic jump condition as

‖ρΦ (U−UI) •nI − (ΓΦ,d∇Φ) •nI‖ = −SΦ,I . (7.38)
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Conditional Volume-averaged Conservation Equation and Interfacial Jump
Condition

Terminology

Volume-Averaging Let R be a space domain with x ∈ R being a position vector.
Then, volume-averaging is defined as

ΦV ≡ 1
V

∫
V

Φ (x + η, t) dxη with V ⊂ R, (7.39)

where V denotes the averaging volume based on an averaging length scale,
which is invariant in time and space. The location vector x points to the
centroid of V , whereas η is used as a relative position vector to locate any
position within V relative to its centroid. For the sake of brevity and ease of
reading, the volume-averaging operator shall further be denoted with a simple
overbar, i.e., without the ’V ’.

Conditioning Conditioning of the arbitrary general local instantaneous quantity Φ is
provided by multiplication with the so-called phase indicator function Iϕ that
takes the value one within phase ϕ and zero elsewhere.

Iϕ (x, t) =
{

1 if x ∈ ϕ at time t
0 otherwise.

(7.40)

The product IϕΦ is generally entitled conditioned quantity and is denoted Φϕ

in the remainder of this thesis, Φϕ ≡ IϕΦ.

Conditional Volume-averaged Quantities and Derivatives

The above definitions enable to examine the generic arbitrary transport quantity Φ
after conditioning and volume-averaging:

IϕΦ = Φϕ = 1
V

∫
V
Iϕ (x + η, t) Φ (x + η, t) dxη

= 1
V

∫
Vϕ

Φ (x + η, t) dxη

= Vϕ
V

1
Vϕ

∫
Vϕ

Φ (x + η, t) dxη

= αϕ Φϕ
, (7.41)

where αϕ ≡ Vϕ/V denotes the volumetric phase fraction and Φϕ represents the
phasic or intrinsic average which has been defined according to

Φϕ ≡ 1
Vϕ

∫
Vϕ

Φ (x + η, t) dxη. (7.42)
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Figure 7.14: Illustration of the interfacial surface averaging procedure.

However, in order to arrive at the conditional volume-averaged generic transport
equation, we additionally need to consider conditional volume averaging of spatial
and temporal derivatives:

Iϕ∇Φ = ∇IϕΦ − Φ∇Iϕ
= ∇

(
αϕ Φϕ

)
+ ¬ΦnI

ϕ
Σ, (7.43)

Iϕ∇•Φ = ∇• IϕΦ − Φ•∇Iϕ

= ∇•
(
αϕ Φϕ

)
+ ­Φ•nI

ϕ
Σ and (7.44)

Iϕ
∂Φ
∂t

= ∂ IϕΦ
∂t

− Φ∂Iϕ
∂t

= ∂ IϕΦ
∂t

+ Φ (UI,ϕφ•∇Iϕ)

= ∂αϕ Φϕ

∂t
+ ³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µΦI,ϕnI,ϕφ •UI,ϕφΣ, (7.45)

where ©Φϕ
denotes a conditioned interface-average of a quantity Φ. According

to [85, 97], who follows [84], this can be understood from a further analysis, when
integrating each term in equation 7.43 and 7.44 over an infinitesimal volume element
δV .

Conditioned Interface-averages

Consider the volume element δV = δVϕ + δVφ as illustrated in figure 7.14 being
composed of two infinitesimal volume elements adjacent to the interface – δVϕ on the
ϕ-side and δVφ on the φ-side. Then, integrating over δVϕ, when examining Iϕ∇Φ and
Iϕ∇•Φ , has no net effect on the first terms on the r.h.s. of equations 7.43 and 7.44,
respectively, since the bulk (phase interior) contributions can be regarded constant
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over δVϕ. However, the second terms can be transferred into surface integrals (as
they contain the Dirac delta function), and then read:

Φ∇Iϕ = − δIΦnI,ϕφ = −ΦInI,ϕφ

= − lim
δVϕ→0

1
δVϕ

∫
δVϕ(x, t)

ΦInI,ϕφ dV

= − lim
δVϕ→0

1
δVϕ

∫
SI(x, t)

ΦnI,ϕφ dS, (7.46)

where SI (x, t) is the equation for the interface. Note further that the two volume-
average operations have been interchanged since they commute. Similarly, one
obtains

Φ•∇Iϕ = − δIΦ•nI,ϕφ = −ΦI•nI,ϕφ

= − lim
δVϕ→0

1
δVϕ

∫
δVϕ(x, t)

ΦI•nI,ϕφ dV

= − lim
δVϕ→0

1
δVϕ

∫
SI(x, t)

Φ•nI,ϕφ dS. (7.47)

To omit this rather ponderous (yet illustrative) presentation, it is useful to introduce
the definition of a conditioned interface-average ©Φϕ

:

©Φϕ
≡ 1
Σ

lim
δVϕ→0

1
δVϕ

∫
δVϕ

ΦIdV = 1
Σ

lim
δVϕ→0

1
δVϕ

∫
SI(x, t)

Φ dS, (7.48)

with Σ ≡ lim
δV→0

1
δV

∫
SI(x, t)

dS, (7.49)

where Σ denotes the interfacial area density, i.e., the interfacial surface area per unit
volume. Similarly, we define an interface average ©Φ according to [85], being the
surface integral per unit volume divided by the interfacial area density,

©Φ ≡ 1
Σ

lim
δV→0

1
δV

∫
SI(x, t)

Φ (x, t) dS, (7.50)

which can be transferred into ©Φϕ
considering the limiting value of Φ after condi-

tioning and approaching the interface from the ϕ-side:
©Φϕ

= ¬ΦI,ϕ (7.51)
with ΦI,ϕ = δIΦϕ.

In doing so, interfacial quantities, i.e., quantities that are inherently defined on the
interface, can be written as

­ΦI,ϕφ

ϕ
= ­ΦI,ϕφ , (7.52)

whereas the limiting values of bulk quantities, when the interface is approached from
one side – either the ϕ- or the φ-side – still needs to be distinguished according to
equation 7.51.
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Conditional Volume-averaged Conservation Equation and Interfacial Jump
Condition

In order to obtain the averaged arbitrary generic transport equation its local instan-
taneous counter-part (7.37) is conditional volume-averaged, which reads

Iϕ
∂ρΦ
∂t

+ Iϕ∇• (ρΦU) − Iϕ∇• (ΓΦ,d∇Φ) − IϕSΦ = 0. (7.53)

Now recalling equations 7.41, 7.43, 7.44 and 7.45 yields, when neglecting mass
transfer:

∂αϕ ρΦ
ϕ

∂t
+∇•

(
αϕ ρΦUϕ

)
−∇•

(
αϕ ΓΦ,d∇Φϕ

)
= IϕSΦ +

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(ΓΦ,d∇Φ) •nI

ϕ

Σ.

(7.54)

Equation 7.38 represents the local-instantaneous jump condition for a generic trans-
port quantity Φ. Therefore, we arrive at the corresponding volume-averaged interface
balance by conditioning and subsequently volume-averaging. Conditioning is accom-
plished by multiplication with δI (x− xI , t), which represents the interface delta
function. Taking into account the symmetry, nI,ϕφ = −nI,φϕ , and neglecting mass
transfer, it is:

‖ (ΓΦ,d∇Φ) •nI‖δI = −SΦ,IδI

⇔ (ΓΦ,d∇Φ)I,ϕ •∇Iϕ + (ΓΦ,d∇Φ)I,φ •∇Iφ = −SΦ,IδI

⇔
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(ΓΦ,d∇Φ) •nI,ϕφ

ϕ

Σ +
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(ΓΦ,d∇Φ) •nI,φϕ

φ

Σ = SΦ,IδI . (7.55)

By replacing the generic transport quantity Φ as well as corresponding coefficients
and source terms according to table 7.3 we arrive at the conditional volume-averaged
conservation equation of an arbitrary chemical species i
∂αϕ ρxi

ϕ

∂t
+∇•

(
αϕ ρxiU

ϕ
)
−∇•

(
αϕ ρDi∇xi

ϕ
)
− αϕ R̂i

ϕ
=
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(ρDi∇xi) •nI,ϕφ

ϕ

Σ,

(7.56)

and its corresponding jump condition,
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(ρDi∇xi) •nI,ϕφ

ϕ

Σ +
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(ρDi∇xi) •nI,φϕ

φ

Σ = 0. (7.57)

By substituting ci = xi · c = xi · ρ/M – where c, ρ and M denote the mean mixture
concentration, density and molar mass, respectively – it follows for a diluted species
i (c = const, ρ = const and M = const, even for varying ci) from equation 7.56:

∂αϕ ci
ϕ

∂t
+∇•

(
αϕ ciU

ϕ
)
−∇•αϕDi∇ci

ϕ − αϕRi
ϕ = ³¹¹¹¹¹·¹¹¹¹¹µDi∇ci

ϕ
Σ. (7.58)
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Table 7.3: Coefficients for the generic transport equation – species
conservation.

balance Φ ΓΦ,d SΦ SΦ,I

species xi ρDi R̂i 0

M/ρ ci M Di M Ri 0

and from equation 7.57 for the corresponding jump condition:

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(Di∇ci) •nI,ϕφ

ϕ

Σ +
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(Di∇ci) •nI,φϕ

φ

Σ = 0. (7.59)

Neglecting fluctuations, i.e., assuming c′ϕi U′ϕ
ϕ

= 0, and recognizing D′ϕi = 0,
equation 7.58 reads finally

∂αϕ ci
ϕ

∂t
+∇•

(
αϕ ci

ϕ Uϕ
)

= ∇•
(
αϕDi

ϕ∇ ciϕ
)

+ αϕRi
ϕ

− ³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µDi∇ci•nI,ϕφ
ϕ
Σ. (7.60)

7.B. Validation Study

The derivation procedure for the CST model reveals one basic prerequisite which
needs to be fulfilled for an accurate and reliable solution. This is related to the
split of the diffusive term into (a) bulk and (b) interfacial contributions (cf. equation
7.27):

ad b) In the derivation for the interfacial contribution we employ ci
ϕ = He · ciφ as

the conditional volume-averaged counter-part of the local-instantaneous jump
condition according to Henry’s law. However, this clearly implicates the require-
ment to resolve all scales (DNS) such that the volume-averaged concentration
values in cells adjacent to the interface approach their corresponding phase-
sided limits at the interface.

ad a) As for the bulk contribution, the same requirement follows: while we get the
known outcome for the diffusive bulk term, we expect the derivation to be
reasonable. However, by redefining the molar mixture concentration Ci, a
model error might have been introduced, since the expressions for Ci are only
the same for equivalent diffusivities. However, if we exploit the analogy of
volume-averaging and spatial filtering using a box filter kernel, a simple study
of the one-dimensional species transfer problem indicates only a minor impact:
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(a) He = 3.
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(b) He = 10.

Figure 7.15: Quantitative comparison of
normalized species
concentration profiles across a
planar interface in a cube.
Measures taken for
Di

φ
/Di

ϕ = 103 along the
center-line at 0.0 s (�), 0.05 s
(•), 0.2 s (N) and 0.5 s (�).
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(c) He = 30.

the local instantaneous profiles of both concentration [98, pg. 38 ff.] and the
phase indicator across the interface within an averaging length are known.
Hence, the phasic concentrations ci

ϕ and ci
φ (from employing conditional

volume-averaging) as well as the volumetric phase fractions αϕ and αφ (from
convolution of phase indicator Iϕ and the box filter kernel) can be used to
explicitly calculate the mixture concentration Ci within an averaging length
scale. We then state that a model error is only introduced, if the molar mixture
concentrations Ci are found to vary when applying different formulations for
Ci. However, the deviation of Ci within the averaging length is below 2%
for sufficient spatial resolution and scales linearly with the averaging length
provided to resolve the species concentration profiles.

In order to assess the range of validity of the CST model, within which an accurate
and reliable solution can be expected, we have accomplished a validation study. For
this purpose, the test case for species transfer across a planar interface in a cube
(cf. section 7.5) can be adapted towards more demanding Henry coefficients and
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more realistic diffusivities: the Henry coefficients have been varied from He = 3 over
He = 10 to He = 30; with Di

ϕ = 10−7 m2

s and Di
φ = 10−4 m2

s , diffusion coefficients
have been chosen such that their ratio is 103 4. The results as depicted in figure
7.15 are in very good agreement with the exact solution obtained using Matlab®

v. 7.9 (R2009) at high temporal and spatial resolutions. Thus, the CST method is
applicable to a wide and realistic range of material and transport properties.

4 Further increase of the diffusivity ratio only results in the requirement of an increased spatial
resolution but per se does not impair the accuracy of the CST model.
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8
Numerical Simulation of Multi-scale
Two-Phase Flows using a Hybrid
Interface-Resolving Two-Fluid Model
(HIRES-TFM)

Abstract

The main challenge in Computational Multi-Fluid Dynamics (CMFD) is the description
of phenomena that occur over a wide range of scale, ranging from micro- over meso-
to macroscale (multi-scale CMFD). We present the coherent and mathematical rigorous
derivation of a generalized multi-scale model framework, that is based on the Eulerian-
Eulerian two-fluid methodology. For this purpose, we start from first principles that are
the local instantaneous conservation equations for mass and momentum. By conditional
volume-averaging (based on the immersed interface concept) and closure modeling, the
two-phase flow features are first divided into an unresolved portion (on average or sub-
grid scale) and a resolved portion and subsequently interpreted on a physical basis
leading to constitutive relations for closure.

Our resulting two-fluid model framework HIRES-TFM (Hybrid Interface-Resolving Two-
Fluid Model) exhibits the same basic structure as found for single-phase flow, which
results in an inherently stable method and enables us to reuse numerical methodologies
that have been developed for single-phase problems. Moreover, the conceptual approach
is compatible with the LES framework for turbulence modeling, and can be used for
multi-scale flow scenarios, i.e., dispersed and segregated two-phase flows.

227



8. Numerical Simulation of Multi-scale Two-Phase Flows

8.1. Introduction

Many applications in chemical and process engineering involve two-phase flows.
Examples of industrial two-phase flow applications are found in chemical, petroleum,
metallurgical and energy industries and span over various processes from liquid-phase
oxidations, hydrogenations, chlorination, gas scrubbing, waste water treatment to
various bio-technological applications.

The types of flows above often involve both a continuous cascade of temporal and
spatial scales usually varying over orders of magnitude (multi-scale) and multiple
coupled phenomena (multiphysics). Their numerical treatment proves to be extremely
complex. Thus, no general methodology or technique has evolved.

Throughout the last two decades different approaches have been developed estab-
lishing the field of Computational Multi-Fluid Dynamics (CMFD). These CMFD
approaches were motivated by a scale separation that is presumed for two-phase flows:
a given flow type (or flow regime) is regarded as invariant throughout the simulation.
Consequently, a classification of CMFD approaches can be done according to their
ability of capturing certain interfacial scales which characterize a two-phase flow at

• macroscopic scales, i.e., mean/main flow features on the scales of the flow
domain,

• mesoscopic scales, i.e., major changes of the fluid dynamic phenomena on the
scale of large eddies and recirculation regions,

• microscopic scales, i.e., flow features on the scale of bubble-bubble and bubble-
turbulence interaction or in the range of the thickness of the interfacial bound-
ary layer.

Several methodologies have been developed to take advantage of this presumed scale
separation. A rough categorization might read as follows:

Interfacial scale averaging methods. For simulation of industrial two-phase flow ap-
plications the scale of interest is typically rather large – in the order of several
meters. In contrast, the smallest scale one might have to consider is that
of a characteristic ”dispersed phase element” (DPE1), which predominantly
determines the fluid dynamics in an industrial two-phase flow application.

The scales of DPEs typically vary from tens of microns to several millimeters
dependent on underlying process and material parameters under consideration.

1 generalized term for bubbles, drops or particles that will be used as general substitute in the
following.
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8.1. Introduction

Compared to the scale of the flow domain, there exists a clear scale separation
that enables interfacial scale averaging approaches to be used. Averaging
techniques can be employed such that they efficiently decrease computational
costs. Here, all interfacial scales under consideration are averaged – either
spatially over an averaging volume2, temporally over an averaging time interval,
or ensemble-averaged over a set of realizations. The resulting two-phase flow
model is called the two-fluid model or the Eulerian-Eulerian method. It is
described by a concept of inter-penetrating continua: both phases are treated
separately – each with an averaged velocity and pressure field3.

As a consequence of averaging over all interfacial scales, all interfacial exchange
phenomena are subject to modeling via closure models. Therefore, the choice of
closure models is crucial for properly reproducing the desired interfacial physics.
Moreover, this must be accomplished in a way that the closure restores the
physical information that became unresolved (and hence lost) due to the applied
averaging procedure. The challenge is to assemble models on a physically sound
basis, rather than relying on empirical closures.

Interfacial scale resolving methods. For fundamental simulations aiming at the de-
tailed resolution of physico-chemical phenomena at interfaces of two-phase
flows, the scale of interest is typically rather small – of the order of several
microns.

At the other end of scale range, an interfacial flow comprises the motion of
molecules where the interface is represented by a transition region of a few tens
of Ångströms. Over this region, collections of molecules belonging to one phase
(out of the two phases) coexist at a certain probability, promoting a smooth
but rapid transition between the phases.

As a common modeling hypothesis, the interface is approximated as a math-
ematical surface of discontinuity. This assumption is based on a clear scale
separation between the molecular and interfacial scale (i.e. of a DPE) by orders
of magnitude.

However, only a small number of studies have considered averaging based on
this scale separation. Wörner et al. have found that volume-averaging of local
instantaneous conservation equations for mass, momentum and energy yields
the well-known governing equations of the Volume-of-Fluid (VoF) method, pro-
vided that the interfacial structures are sufficiently well resolved [1,2]. Sun and

2 Due to its straightforward interpretability the volume-averaging technique is mostly employed in
the context of two-phase flows.

3 For numerical simulations, usually the so-called one-field assumption is applied to the pressures
that is the phases share a single pressure field. We have adopted this assumption for our
simulations as well.
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8. Numerical Simulation of Multi-scale Two-Phase Flows

Beckermann [3] have shown that ensemble-averaging of conservation equations
with sharp interfaces results in a diffuse interface model, which can also be re-
lated to thermodynamically derived models. This is achieved by superimposing
microscopic (atomic-scale) and macroscopic interface morphologies.

The majority of research has been based on the sharp interface formulation
resulting in a multitude of methods, each of which treats the characteristic
interfacial jump (in flow and material properties) in a specific manner. Typical
examples are the ghost-fluid methods [4], interface tracking methods [5, 6] and
interface capturing methods [7–9]. Special treatment of the interfacial jump
conditions is needed since there is no natural or straightforward representation
to handle these sharp discontinuities in an Eulerian framework.

In both averaged and sharp interface formulations of interfacial scale resolving
methods some problems need to be addressed:

• flexibility and robustness (stability) for complex two-phase flow scenarios,
e.g., changing interfacial morphology due to coalescence or break-up. This
is a problem usually present in sharp interface models, as they become sin-
gular in extreme situations,e.g., in the moment of coalescence or breakup.

• capability to handle multi-scale two-phase flow scenarios, i.e., capturing
mean interfacial evolution while using models for interfacial details such
as microscale curvature or interfacial boundary layers.

Both interface scale averaging and interface scale resolving techniques are established
methodologies and have been successfully applied to various two-phase flows. How-
ever, although two-phase flow systems and related interfacial transport phenomena
commonly cover a wide range of physical scales, both CMFD approaches presume a
distinct scale range in narrow confines. Consequently, they are usually restricted to
one flow type. For DPEs larger than the characteristic resolution length scale (control
or averaging volume) are dealt with via interfacial scale resolving methods, whereas
DPEs smaller than the characteristic length scale are modeled, using interfacial scale
averaging techniques. In general, different scales of interest involves using different
CMFD approaches in a decoupled manner. Typically the choice is based on grounds
of mesh resolution. Really, a more general multi-scale modeling framework is needed
without constraints of mesh resolution.

It has been recently suggested to explicitly couple interfacial scale averaging and
interfacial scale resolving methods in order to arrive at a more general two-phase
flow model, capable of treating flow phenomena over a wider range of interfacial
scales. Multi-scale models either explicitly couple the two-fluid model (TFM) with
the Volume-of-Fluid (VoF) method [10–24] or they mimic the VoF method within
the TFM framework [25–34]. Tomiyama et al. [18] recognize the issue by introducing
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the dimensionless ratio d? ≡ db
∆x : if d? � 1, i.e., the characteristic interfacial length

scale is much larger than the computational cell size, the VoF method is adopted,
while for d? � 1, a two-/multi-fluid approach is utilized. In consequence, there is a
gap in the scales, rendering the above hybrid methods inconsistent. However, this
introduces a level of uncertainty and doubts on the applicability of models.

This work is concerned with a general modeling framework, that not only inher-
ently encompasses both interfacial scale resolving and interfacial scale averaging
approaches, but also consistently involves intermediate scale situations. In this work
we will present an approach based on a consistent model capturing under-resolved
interfacial features. For this purpose, the Eulerian-Eulerian two-fluid approach is
examined. The two-fluid model is rooted in fundamental local-instantaneous con-
servation equations, that are valid within each phase up to the interface separating
the phases. Consequently, an appropriate conditional averaging procedure (based on
the immersed interface concept) and closure modeling constitute the derivation for a
generalized two-fluid approach.

In the remainder, we present a consistent derivation of a model framework, start-
ing from first principles: local instantaneous conservation equations for mass and
momentum and interfacial jump conditions. This leads to a closed set of governing
equations suitable for numerical simulations of two-phase multi-scale flows. The
framework will encompass both interfacial scale resolving and averaging approaches
with a smooth transition between these. Section 8.2 gives the theoretical basis for
the two-phase model framework: the conditional volume-averaging technique applied
to both the local instantaneous conservation equations and to coupling interfacial
jump conditions. In section 8.3 constitutive relations are given for closure regarding
a segregated two-phase flow. This focus has been chosen, since conditional volume-
averaging and closure modeling for the dispersed flow types lead to the Eulerian-
Eulerian two-fluid model of Ishii [35]. The presented model framework for segregated
flows is complementary to Ishii’s two-fluid model for dispersed two-phase flows. This
results in a flexible novel closure framework covering the intermediate interfacial scale
range and allowing for partially (un)resolved scales within the flow domain. In section
8.4 the model is examined for simple two-phase test cases. A brief summary and an
outlook is provided in section 8.5.
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Figure 8.1: Control volume – Two-phase flow.

8.2. Conceptual Approach of Conditional
Volume-Averaging

8.2.1. Local Instantaneous Conservation Equation and Interfacial
Jump Condition

Starting from first principles, consider an arbitrary control volume V . In order
to extend the consideration towards a two- or multiphase case, it is instructive to
immerse an interface separating the phases of the system from each other within
the control volume V (immersed interface concept), figure 8.1. Thus, the system
comprises several phase volumes Vk ⊆ V

⋃
k=ϕ,φ,... Vk, each possessing an interface SI

separating it from its neighboring phase. The control surface S is composed of phase
surfaces Sk ⊆ S

⋃
k=ϕ,φ,... Sk that arise where the control volume V cuts the phase

volumes Vk.

In general, more phases – i.e., a third phase κ – might be present within the control
volume. Without loss of generality4 these will be dropped, using two phases ϕ and φ.
In the following, phase ϕ shall be examined, whereas phase φ is a phase neighbor.

4 One or more additional phases would be treated analogously without imposing additional com-
plexity.
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Due to the presence of two or more phases within the control volume V , we will
distinguish among the respective phase contributions to the transport quantity Φ.
For this purpose, all balances have to be considered over the phase surfaces Sk and
the phase volumes Vk – with k ∈ [ϕ, φ]. The overall balance equation for Φ within
the control volume V reads:∑

k=ϕ,φ

(
d

dt

∫
Vk(t)

ρΦdV
)

=−
∑
k=ϕ,φ

∫
Sk(t)

nk• (ρΦU) dS

−
∑
k=ϕ,φ

∫
Sk(t)

nk• (−ΓΦ,d∇Φ) dS

+
∑
k=ϕ,φ

∫
Vk(t)

SΦ (Φ) dV

+ 1
2
∑
k=ϕ,φ

∑
j=ϕ,φ

(1− δjk)
∫
SI,jk(t)

SΦ,I (Φ) dS, (8.1)

with the last term on the r.h.s. of equation 8.1 representing a generic coupling
interfacial source term, and the first three terms holding the bulk (phase interior)
contributions within phases ϕ and φ, respectively.

Next, Leibniz’ and Gauss’ theorem are utilized for the temporal and spatial term,
respectively. The balance equation 8.1 reads

0 =
∑
k=ϕ,φ

∫
Vk(t)

[
∂

∂t
(ρΦ) +∇• (ρΦU)−∇• (ΓΦ,d∇Φ)− SΦ (Φ)

]
dV

−1
2
∑
k=ϕ,φ

∑
j=ϕ,φ

(1− δjk)
∫
SI,kj(t)

[
ρΦ (U−UI,kj) •nI,kj

− (ΓΦ,d∇Φ) •nI,kj + SΦ,I

]
dS. (8.2)

Since equation 8.2 is valid for arbitrary phase volumes Vk and arbitrary configurations
of phase interfaces SI,ϕφ within V , its r.h.s. terms can be set to zero independently.
The local instantaneous generic transport equation for phase ϕ reads

∂ρΦ
∂t

+∇• (ρΦU)−∇• (ΓΦ,d∇Φ)− SΦ (Φ) = 0. (8.3)

There always exists a coupling with (at least) another transport equation of the same
type due to the presence of a neighboring phase φ. Interfacial jump conditions are
specified from the second term of equation 8.2 in order to close the system. Note that
the generic condition as set out in the second term of equation 8.2 is independent
of the choice of phase, i.e., nI,ϕφ = −nI,φϕ . Hence, symmetry can be utilized to
simplify the derivation. Introducing a jump notation, ‖ · ‖ across the interface SI as
‖f‖ ≡ fI,ϕ−fI,φ, the second term in equation 8.2 yields the generic jump condition:

‖ρΦ (U−UI) •nI − (ΓΦ,d∇Φ) •nI‖ = −SΦ,I . (8.4)
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8.2.2. Conditional Volume-averaged Conservation Equation and
Interfacial Jump Condition

Terminology

Volume-Averaging Let R be a space domain with x ∈ R being a position vector.
Then, volume-averaging is defined as

ΦV ≡ 1
V

∫
V

Φ (x + η, t; µ) dxη with V ⊂ R, (8.5)

where V denotes the averaging volume based on an averaging length scale,
invariant in time and space. The location vector x points to the centroid of V ,
whereas η is a relative position within V . The volume-averaging operator shall
be denoted with an overbar.

Conditioning Conditioning of the local instantaneous quantity Φ is done by multi-
plication with the phase indicator function Iϕ:

Iϕ (x, t) =
{

1 if x ∈ ϕ at time t
0 otherwise.

(8.6)

The product IϕΦ is entitled conditioned quantity and is denoted Φϕ in the
remainder, Φϕ ≡ IϕΦ.

Conditional Volume-averaged Quantities and Derivatives

Let us examine the generic arbitrary transport quantity Φ after conditioning and
volume-averaging:

IϕΦ = Φϕ = 1
V

∫
V
Iϕ (x + η, t) Φ (x + η, t) dxη

= 1
V

∫
Vϕ

Φ (x + η, t) dxη

= Vϕ
V

1
Vϕ

∫
Vϕ

Φ (x + η, t) dxη

= αϕ Φϕ
, (8.7)

where αϕ ≡ Vϕ/V denotes the volumetric phase fraction and Φϕ represents the
phasic or intrinsic average:

Φϕ ≡ 1
Vϕ

∫
Vϕ

Φ (x + η, t) dxη. (8.8)
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Figure 8.2: Illustration of the interfacial surface averaging procedure.

In order to arrive at the conditional volume-averaged generic transport equation, we
additionally need to consider conditional volume-averaging of spatial and temporal
derivatives of Φ:

Iϕ∇Φ = ∇IϕΦ − Φ∇Iϕ
= ∇

(
αϕ Φϕ

)
+ ¬ΦnI

ϕ
Σ, (8.9)

Iϕ∇•Φ = ∇• IϕΦ − Φ•∇Iϕ

= ∇•
(
αϕ Φϕ

)
+ ­Φ•nI

ϕ
Σ and (8.10)

Iϕ
∂Φ
∂t

= ∂ IϕΦ
∂t

− Φ∂Iϕ
∂t

= ∂ IϕΦ
∂t

+ Φ (UI,ϕφ•∇Iϕ)

= ∂αϕ Φϕ

∂t
+ ³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µΦI,ϕnI,ϕφ •UI,ϕφΣ, (8.11)

where ©Φϕ
denotes a conditioned interface-average of a quantity Φ. According to

Weller [36,37], following Dopazo [38], this can be understood from a further analysis,
when integrating each term in equation 8.9 and 8.10 over an infinitesimal volume
element δV , which is considered below.

Conditioned Interface-averages

Consider the volume element δV = δVϕ + δVφ, figure 8.2, composed of two infinites-
imal volume elements adjacent to the interface – δVϕ on the ϕ-side and δVφ on the
φ-side. Integrating over δVϕ, when examining Iϕ∇Φ and Iϕ∇•Φ , has no net effect
on the first terms on the r.h.s. of equations 8.9 and 8.10, respectively, since the bulk
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(phase interior) contributions are regarded constant over δVϕ. The second terms can
be transfered into surface integrals:

Φ∇Iϕ = − δIΦnI,ϕφ = −ΦInI,ϕφ

= − lim
δVϕ→0

1
δVϕ

∫
δVϕ(x, t)

ΦInI,ϕφ dV

= − lim
δVϕ→0

1
δVϕ

∫
SI(x, t)

ΦnI,ϕφ dS, (8.12)

where SI (x, t) is the equation for the interface. Note that the two volume-average
operations have been interchanged since they commute. Similarly, one obtains

Φ•∇Iϕ = − δIΦ•nI,ϕφ = −ΦI•nI,ϕφ

= − lim
δVϕ→0

1
δVϕ

∫
δVϕ(x, t)

ΦI•nI,ϕφ dV

= − lim
δVϕ→0

1
δVϕ

∫
SI(x, t)

Φ•nI,ϕφ dS. (8.13)

It is useful to introduce the definition of a conditioned interface-average ©Φϕ
:

©Φϕ
≡ 1
Σ

lim
δVϕ→0

1
δVϕ

∫
δVϕ

ΦIdV = 1
Σ

lim
δVϕ→0

1
δVϕ

∫
SI(x, t)

Φ dS, (8.14)

with Σ ≡ lim
δV→0

1
δV

∫
SI(x, t)

dS, (8.15)

where Σ denotes the interfacial area density – the interfacial surface area per unit
volume. Similarly, we define an interface average ©Φ according to Weller [36], as
surface integral per unit volume divided by the interfacial area density,

©Φ ≡ 1
Σ

lim
δV→0

1
δV

∫
SI(x, t)

Φ (x, t) dS, (8.16)

which can be transferred into ©Φϕ
– considering the limiting value of Φ after condi-

tioning and approaching the interface from the ϕ-side:
©Φϕ

= ¬ΦI,ϕ (8.17)
with ΦI,ϕ = δIΦϕ.

In doing so, interfacial quantities can be written as
­ΦI,ϕφ

ϕ
= ­ΦI,ϕφ , (8.18)

whereas the limiting values of bulk quantities, when approaching the interface from
one side – either the ϕ- or the φ-side – still needs to be distinguished according to
equation 8.17.

236



8.2. Conceptual Approach of Conditional Volume-Averaging

Table 8.1: Coefficients for the generic transport equation (two-phase
flow) – mass and momentum balance.

balance Φ ΓΦ,d SΦ SΦ,I

mass 1 0 0 0

momentum U µ ρg−∇p ‖pnI‖ − σκI,ϕφ nI,ϕφ −∇I,ϕφσ

Conditional Volume-averaged Conservation Equation and Interfacial Jump
Condition

In order to obtain the averaged generic transport equation, its local instantaneous
counter-part 8.3 is conditional volume-averaged,

Iϕ
∂ρΦ
∂t

+ Iϕ∇• (ρΦU) − Iϕ∇• (ΓΦ,d∇Φ) − IϕSΦ = 0. (8.19)

Now recalling equations 8.7, 8.9, 8.10 and 8.11, and neglecting mass transfer UI =
UI,ϕ yields:

∂αϕ ρΦ
ϕ

∂t
+∇•

(
αϕ ρΦUϕ

)
−∇•

(
αϕ ΓΦ,d∇Φϕ

)
= IϕSΦ +

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(ΓΦ,d∇Φ) •nI

ϕ

Σ.

(8.20)

From equation 8.4, representing the local-instantaneous jump condition for a generic
transport quantity Φ, we arrive at the corresponding volume-averaged interface
balance by conditioning and subsequently volume-averaging. Conditioning is ac-
complished by multiplication with δI (x− xI , t). Taking into account the symmetry,
nI,ϕφ = −nI,φϕ , and neglecting mass transfer, it is:

‖ (ΓΦ,d∇Φ) •nI‖δI = −SΦ,IδI

⇔ (ΓΦ,d∇Φ)I,ϕ •∇Iϕ + (ΓΦ,d∇Φ)I,φ •∇Iφ = −SΦ,IδI

⇔
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(ΓΦ,d∇Φ) •nI,ϕφ

ϕ

Σ +
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
(ΓΦ,d∇Φ) •nI,φϕ

φ

Σ = SΦ,IδI . (8.21)

By replacing the generic transport quantity Φ as well as corresponding coefficients
and source terms according to table 8.1 we arrive at the conditional volume-averaged
conservation equation of mass and momentum, respectively.

• conditional volume-averaged continuity equation:

∂αϕ ρ
ϕ

∂t
+∇•

(
αϕ ρU

ϕ
)

= 0. (8.22)
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By use of an density-weighted decomposition5, this yields:
∂αϕ ρ

ϕ

∂t
+∇•

(
αϕ ρ

ϕŨϕ
)

= 0. (8.23)

Considering incompressible flows with constant densities ρϕ and ρφ in both
phases ϕ and φ, it is Φ̃ϕ != Φϕ, since Iϕρ = ρϕ = const. Then, the conditional
volume-averaged continuity equation reads:

∂αϕ
∂t

+∇•
(
αϕ Uϕ

)
= 0. (8.24)

• conditional volume-averaged momentum equation:

∂αϕ ρU
ϕ

∂t
+∇•

(
αϕ ρUUϕ

)
−∇•

(
αϕ µ∇Uϕ

)
=−∇ (αϕ pϕ) + αϕ ρ

ϕg

−«pnI ϕΣ + ³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ(µ∇U) •nI
ϕ
Σ.
(8.25)

The second term on the l.h.s. of equation 8.25, needs a density-weighted de-
composition:

ρUUϕ = ρϕ
˜̃UϕŨϕ

ϕ

+ 2 ρϕ ˜̃UϕU′′ϕ
ϕ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

+ ρϕ Ũ′′ϕU′′ϕ
ϕ

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≡R̃

ϕ

= ρϕŨϕŨϕ + ρϕR̃ϕ
, (8.26)

with R̃ϕ representing the density-weighted Reynolds stress tensor, by means of
which velocity fluctuations, which may be introduced by interface motion and
turbulence, are accounted for.

Equation 8.25 can be rewritten into a more common form by reformulation of
the diffusive term for incompressible Newtonian flows decomposing the velocity
gradient tensor ∇U into D ≡ −1

2
(
∇U + (∇U)T

)
and S ≡ −1

2
(
∇U− (∇U)T

)
.

The conditional volume-averaged momentum equation finally reads:

∂αϕ ρ
ϕŨϕ

∂t
+∇•

(
αϕ ρ

ϕŨϕŨϕ
)

+∇•
(
αϕ ρ

ϕR̃ϕ
)

=−∇ (αϕ pϕ)−∇• (αϕ τϕ) + αϕ ρ
ϕg + Mϕ, (8.27)

5 Generally, Reynolds decomposition of local-instantaneous quantities Φ and Ψ into their average
and corresponding fluctuating parts Φ = Φ + Φ′ and Ψ = Ψ + Ψ′ is adopted. However,
considering the average of the product ΨΦ = Ψ Φ + Ψ′Φ′ inherently results in the need for
modeling the fluctuation term Ψ′Φ′ . Hence, we adopt an appropriate (weighted) decomposition
to avoid this a priori unclosed term: Φ (x, t) = ΨΦ

Ψ
− Ψ′Φ′

Ψ
≡ Φ̃ + Φ′′, where Φ′′ represents

the fluctuation with respect to the weighted average. We introduce the so-called phase-weighted
or density-weighted (Favre) average by choosing the weight Ψ = Iϕρ = ρϕ, which results in
Φ̃
ϕ
≡ IϕρΦ

αϕ ρ
ϕ and the corresponding fluctuation Φ′′ϕ ≡ Φ− Φ̃

ϕ
.
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with the viscous shear stress tensor being defined as τ ≡ 2µD, and the last
term in the r.h.s. being

Mϕ ≡ −
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ(pI + τ ) •nI

ϕ
Σ = (pI + τ )I,ϕ •∇Iϕ

= −¬σ•nIϕΣ = σI,ϕ•∇Iϕ , (8.28)

denoting the interfacial momentum transfer term.

For incompressible two-phase flows, i.e., Φ̃ϕ != Φϕ, the conditional volume-
averaged momentum equation becomes

∂αϕ Uϕ

∂t
+∇•

(
αϕ Uϕ Uϕ

)
+∇•

(
αϕ Rϕ

)
=− ∇ (αϕ pϕ)

ρϕ
− ∇• (αϕ τϕ)

ρϕ
+ αϕg + Mϕ

ρϕ
. (8.29)

Replacing the generic transport quantity Φ and corresponding coefficients and source
terms, one can state the following for the

• conditional volume-averaged interfacial mass jump condition:
In the absence of mass transfer (e.g., due to phase change) the generic jump
condition as provided in equation 8.21 degenerates to the trivial identity 0 = 0,
indicating that no additional condition has to be taken into account.

• condition volume-averaged interfacial momentum jump condition:

(µ∇U)I,ϕ •∇Iϕ + (µ∇U)I,φ •∇Iφ
= pI,ϕnI,ϕφ δI − pI,φnI,φϕ δI − σκI,ϕφ nI,ϕφ δI
= pI,ϕ∇Iϕ + pI,φ∇Iφ + σ κI,ϕφ∇Iϕ (8.30)

⇔ − ³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ(pI + τ ) •nI
ϕ
Σ − ³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ(pI + τ ) •nI

φ
Σ = σ¬κInIϕΣ

−¬σ•nIϕΣ −¬σ•nIφΣ = σ¬κInIϕΣ. (8.31)

Taking into account the definition of the interfacial momentum transfer term
Mϕ (and for Mφ) according to equation 8.28, we arrive at the shorthand
notation for the conditional volume-averaged momentum jump condition. In
the absence of mass transfer and neglecting any variations of the surface tension
σ along the interface, it is:

Mϕ + Mφ = Mσ, (8.32)

where Mσ on the r.h.s. of equation 8.32 denotes the averaged interfacial mo-
mentum source due to surface tension:

Mσ ≡ −σ κI,ϕφ∇Iϕ = σ ³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µκI,ϕφ nI,ϕφΣ. (8.33)
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8.3. Multi-scale Two-Phase Methodology & Closure

Equations 8.24 and 8.29 constitute a two-phase flow model, which is applicable for
different flow types that might occur in a two-phase system. In this form the two-
phase flow model is not solvable.

The unclosed terms in the two-phase flow model equations might be categorized into
three groups, that are

• phase-interaction terms: interfacial momenta transfer terms Mϕ and Mφ along
with the interfacial momentum source term due to surface tension Mσ

• self-interaction terms: averaged shear stress terms τϕ and τφ

• turbulence terms: averaged Reynolds stress tensors Rϕ and Rφ6.

All of the above terms will differ when considering different flow types. The concrete
form of closure might vary dependent upon the length scale down to which the two-
phase flow under consideration is resolved. In the remainder of this section closure
relations shall be examined. The emphasize is given to the ’information loss’ due to
averaging beyond the averaging scale.

In order to develop a consistent closure it is first advisable to have a closer look on
the ’conceptual picture’ that can be drawn from the applied averaging procedure and
its physical interpretation. For this purpose it is of use to distinguish between two
specific flow types as shown in figure 8.3, namely

1.) dispersed flows (figure 8.3a), e.g., bubbly or droplet flows, and

2.) segregated flows (figure 8.3b), e.g., stratified or wavy free-surface flows,

as limiting cases of a two-phase flow scenario of mixed type, where bubbles and
droplets exist in the liquid and the gaseous phase.

Figure 8.3 shows that the conditional volume-averaging results in one uniform ’phys-
ical picture’ for both two-phase flow types. It shows a clear separation into resolved
mesoscale and unresolved microscale. We refer to the two-phase flow models as
interfacial scale averaging or interfacial scale resolving.
6 Turbulence modeling of two- and multiphase systems, is still an open research area on its own, that

requires detailed knowledge of the interaction between turbulent and morphological interfacial
structures. The interested reader is referred to the work of Toutant et al. [39–42], who examine the
interplay of under-resolved discontinuous interfaces and turbulence structures, employing spatial
filtering as central tool. We will disregard turbulence modeling in this study.
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Figure 8.3: Principles of model closure.

In dispersed two-phase flows, the interfacial scale averaging models are well-known
and established. These approaches model all (unresolved) interfacial scales [35] –
that of DPEs (bubbles, droplets or particles) – employing closure relations in the
underlying averaging framework, and resolve the other scales by means of numerically
solving for averaged conservation equations. In segregated flows partially interfacial
scale resolving models have not been considered yet, while the use of fully interfacial
scale resolving models is again a well-known and established practise [7–9]. However,
the latter does not allow for under-resolved interfacial details. Furthermore, since
a volume-averaging procedure acts as spatial filtering, the partially interfacial scale
resolving models appear to be fully compatible with the LES methodology as it is
commonly adopted for modeling single-phase turbulence (using a box-filter). Conse-
quently, for the purpose of a consistent and general closure, we shall focus on partially
interfacial scale resolving methods. For this purpose a scale similarity hypothesis is
proposed for two-phase flows:

the smallest resolved scales of a two-phase flow are assumed to exhibit
similar characteristics as the largest unresolved ones.

Consequently, conditional volume-averaging leads to two model approaches that are
conceptually compatible. In both approaches each phase is treated separately and is
assumed to coexist within the averaging volumes, possessing characteristic properties
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and an own velocity and pressure field. Hence, separate sets of averaged conservation
equations are solved for each phase present in the system (Eulerian-Eulerian two-fluid
methodology). Depending on the two-phase flow type, two concepts emerge:

• Concept of Interpenetrating Continua and

• Concept of Partially Penetrating Continua,

where the former corresponds to the interfacial scale averaging closure framework,
which is well-established for dispersed flows, and the latter concept corresponds to
the partially interfacial scale resolving model framework. The terminology ’concept
of partially penetrating continua’ has been introduced in order to account for the con-
ceptual proximity. The concept of partially penetrating continua shall be examined in
detail in the following, while we only briefly consider the concept of interpenetrating
continua.

8.3.1. Closure Strategy & Conceptual Approach

Concept of Interpenetrating Continua The dispersed two-phase flow is considered
as a two-constituent pseudo-continuum, with each phase being treated separately.
The concept of interpenetrating continua corresponds to the interfacial scale aver-
aging model framework. Closure models for the dispersed two phase-flow type are
well-established [43, 44]. The interfacial morphology is not resolved at all. One has
to act on specific assumptions regarding the flow morphology when modeling phase
interactions via closure relations within the averaging framework,e.g., fluid DPEs of
spherical or ellipsoidal shape.

Concept of Partially Penetrating Continua A conceptual framework for segre-
gated flows has to be formulated that is (scale-)compatible and in the same spirit as
the concept of interpenetrating continua for dispersed flow types, called the concept
of partially penetrating continua in the interfacial transition region.

The interfacial morphology is partially resolved, where unresolved interfacial mor-
phologies and phase interactions again must be accounted for in the underlying
averaging framework by appropriate closure. As a consequence, the interface becomes
an interfacial transition region of certain characteristic width, determined by the
averaging length scale.

A model representation of the interface is needed. This can be illustrated along
several quantities representing pivotal features of two-phase flows, the interfacial
averaged curvature ªκI , the unit normal vector ªnI , the interfacial area density Σ,
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Figure 8.4: Closure model for the interfacial morphology.

the interfacial averaged velocity ©Uϕ
, and the interfacial width δ – characterizing

either the interface morphology or its transport (interfacial dynamics).

interfacial morphology The local interface morphology is characterized by the local
curvature κI,ϕφ , and the local unit vector normal to the microscale interface,
nI,ϕφ . Using the phase indicator function Iϕ, it is

κI = κI,ϕφ = ∇•nI,ϕφ and nI = nI,ϕφ = ∇Iϕ
|∇Iϕ|

. (8.34)

Evaluation of the interfacial averaged counter-parts,

ªκI ≡ κI∇Iϕ
|∇Iϕ|

and ªnI ≡ nI∇Iϕ
|∇Iϕ|

, (8.35)

requires detailed knowledge of the microscopic interfacial morphology, which
is a priori unknown. The limit might be pushed somewhat further by taking
advantage of equation 8.9 and substituting Φ = 1, which results in ªnIΣ =
−∇αϕ. Thus, it is:

ªnI = −∇αϕ
Σ

and ªκI = ¬∇•nI = ∇•ªnI = −∇•
(∇αϕ

Σ

)
. (8.36)

Here, Σ comprises two contributions: the averaged (mesoscale, resolved) cur-
vature and the fluctuating (microscale, unresolved) curvature.
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A closure model for the interfacial area density Σ is derived from equation 8.9:

|ªnI |Σ = |∇αϕ|
|
¬nI |≈1⇐⇒ Σ ≡ |∇Iϕ| ≈ |∇ Iϕ | = |∇αϕ|. (8.37)

This model is justified under the assumption |­nI,ϕφ | ≈ 1 stating that the
interfacial area density is allowed to vary only across the interfacial transition
region normal to ­nI,ϕφ – but not along contours of constant αϕ. Σ is assumed
to be dominated by contributions from the unresolved interfacial morphology
within the interfacial transition region, while macroscopic contributions (e.g.,
from the resolved mean curvature) play a much lesser role. Note that assuming
such a local instantaneous isotropic interfacial morphology fully complies with
the requirement of phase invariance, since ∇αϕ = −∇αφ.

For the interfacial averaged interface morphology it follows:

ªnI = ∇αϕ
|∇αϕ|

and ªκI = −∇•
(
∇αϕ
|∇αϕ|

)
, (8.38)

resulting in the desired separation of unresolved and resolved contributions:

ªκI = −∇•
(
∇αϕ
|∇αϕ|

)
= − 1
|∇αϕ|

[
∇•∇αϕ +∇

(
1

|∇αϕ|

)
•∇αϕ

]

= − 1
|∇αϕ|

[
∇2αϕ −

∇αϕ
|∇αϕ|

•∇|∇αϕ|

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=«nI •∇Σ

]
. (8.39)

Since Σ only varies across the interfacial transition region normal to ªnI , it is

ªκI = −∇
2αϕ
|∇αϕ|

+ dΣ

dαϕ
, (8.40)

with the latter contribution identified as contribution from the microscopic
unresolved curvature to ªκI – stemming from local fluctuations inside the
interfacial transition region.

interface transport Decomposition of the instantaneous velocity at the interface into
an interfacial averaged velocity and local interfacial velocity fluctuation yields

UI,ϕ = ©Uϕ
+ U]

I,ϕ. (8.41)

Stating that the unresolved velocity profile is continuous across the interface
– interfacial no-slip condition – a closure model for the interfacial averaged
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Figure 8.5: Closure model for the interfacial averaged velocity.

velocity ©Uϕ
can be deduced, figure 8.5 for a shear flow scenario. From

elementary geometry (intercept theorem) it can be seen, that for a simple case
where µϕ = µφ:

©Uϕ
− Uφ

Uϕ − ©Uϕ = Iφ
Iϕ

⇔ ©Uϕ
= Iφ Uϕ + Iϕ Uφ

, (8.42)

and with a correction for the general case where µϕ 6= µφ:

µφ

µϕ

©Uϕ
− Uφ

Uϕ − ©Uϕ = Iφ
Iϕ

⇔ ©Uϕ
= Iφ µ

ϕ Uϕ + Iϕ µ
φ Uφ

Iϕ µφ + Iφ µϕ
. (8.43)

Consequently, equation 8.43 results in the closure relation for ©Uϕ
(for Iϕ =

Iφ
!= 1/2 at the interface):

©Uϕ
= ¬UI,ϕ = µϕ Uϕ + µφ Uφ

µϕ + µφ
. (8.44)

Phase symmetry is preserved. Considering limiting cases, this closure yields
physically reasonable results. If we choose phase ϕ as liquid phase and φ as
gaseous phase, where µφ � µϕ, it follows ©Uϕ

= Uϕ, which clearly is a
physically plausible outcome.

245



8. Numerical Simulation of Multi-scale Two-Phase Flows

(a) fluctuating interface within the interfacial transi-
tion region.

(b) time history of the phase indicator function.

Figure 8.6: Illustration of a fluctuating interface for an isotropic
interfacial morphology.
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8.3. Multi-scale Two-Phase Methodology & Closure

The second term on the r.h.s. of equation 8.41, i.e., the interfacial velocity
fluctuation U]

I,ϕ, is related to the width δ of the interfacial transition region.
Consider the simple case as illustrated in figure 8.6a, where a flat surface
element of the gas-liquid interface is assumed to oscillate vertically within
the interfacial transition region. Boundaries between which this happens are
characterized by the root-mean-squared position deviation of interfacial fluctu-
ations from the interface mean position. The resulting distance shall be entitled
interfacial width δlI .

This scenario is compatible with the model representation of an isotropic
interfacial morphology illustrated in figure 8.4 and set out for the interfacial area
density Σ. The interfacial surface element shall move with a (for now) constant
interfacial fluctuation velocity U]

I – back and forth in the presumed horizontal
direction. Furthermore, the phase indicator function Iϕ shall vary smoothly
between its limiting values of 0 and 1 within a thin transition zone, where on
molecular-scale fluctuations occur governing the inner atomic-scale structure
of the diffuse interface (as it is commonly described by diffuse interface or
phase-field methods). The width δli of this thin transition zone is assumed to
be of the order of several nanometers.

To approach a more exploitable expression for the interfacial area density Σ
consider an infinitesimal ’interrogation’ volume δV in the limiting case where
δV → 0. Then, the local interfacial area density reads:

Σ = lim
δV→0

δSI
δV

= lim
δl→0

δSI

(δl)3 , (8.45)

where δl represents the edge length of the ’interrogation’ volume δV , and δSI
denotes the interfacial area density, in case the interface is found to be in the
’interrogation’ volume (δl)2 multiplied by the time fraction, that it is effectively
present within δV considering the whole fluctuation in progress. With the help
of figure 8.6b showing the time history of the phase indicator function averaged
over δV , it follows

Σ = lim
δl→0

(δl)2 2 (δli + δl) /U]
I

2 (δlI + δl) /U]
I

1
(δl)3 . (8.46)

As a clear scale separation applies,

δl� δlI and δl� δli, (8.47)

which is considered fulfilled by orders of magnitude, equation 8.46 reduces to

Σ = 1
δlI

, (8.48)
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and thus for the closure of the interfacial width, it follows from equation 8.37

δI(= δ) = 1
|∇αϕ|

. (8.49)

A first attempt for a closure model for δ, it is suggested that

δ ≈ 1
Σ

= 1
|∇αϕ|

, (8.50)

which inversely relates interfacial width δ and interfacial area density Σ,
motivated from the closure for the flame brush thickness of an unwrinkled
flamelet [45].

8.3.2. Momentum Closure

Phase-interaction Terms – Mϕ and Mφ

The first phase-interaction term is the interfacial momentum transfer term Mϕ as
defined in equation 8.28. The momentum equations 8.29 for phase ϕ and φ are
coupled through the conditional volume-averaged momentum jump condition set out
in equation 8.32. Equation 8.28 shows that the integral of the instantaneous pressure
and viscous stress distribution needs to be expressed as constitutive equation. It
is useful to decompose the instantaneous pressure into a static (mean interfacial
pressure) and a dynamic contribution (fluctuating pressure).

pI,ϕ = ©p ϕ + p]I,ϕ, (8.51)

yielding

Mϕ = ©p ϕI•∇Iϕ + (p]I + τ )I,ϕ •∇Iϕ = ©p ϕI•∇Iϕ −
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ(
p]I + τ

)
•nI

ϕ

Σ

= ©p ϕ∇αϕ + Mϕ,h, (8.52)

since

©p ϕ∇Iϕ = −
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
δI
©p ϕnI

ϕ

Σ = −
¬©p ϕ

ϕªnI ϕΣ = ©p ϕ∇αϕ. (8.53)

The second term on the r.h.s. of equation 8.52 is defined as

Mϕ,h ≡ (p]I + τ )I,ϕ •∇Iϕ = −
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ(
p]I + τ

)
•nI

ϕ

Σ. (8.54)

The first term on the r.h.s. of equation 8.52 represents a net force contribution from
the interfacial averaged pressure ©p ϕ in case there is a gradient in the volumetric
phase fraction of phase ϕ, ∇αϕ, and the second term holds the unbalanced interfacial
pressure and shear (viscous) stress contribution ³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ(p]I+τ)•nI

ϕ
Σ.
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Mean interfacial pressure contributions. There are two constituents, that generally
cause the ’mean interfacial’ pressure ©p ϕ to be different from the ’mean bulk’
pressure pϕ:

• phase slip,
i.e., relative motion between the phases, reducing the mean pressure in
vicinity to the interface (Bernoulli effect). For closure an expression would
be of use, that clearly relates the pressure distribution over the interface
to the bulk mean pressure. Subsequent averaging over the interface would
result in a closure relation.

For segregated flows it is suggested to relate the ’interfacial mean’ and the
’bulk mean’ pressure as

©p ϕ = pϕ − αϕαφ ρ
ϕ ρφ

αϕ ρφ + αφ ρϕ
|Uφ − Uϕ|2 (8.55)

following Bestion [46], who introduced this term in the Cathare Code
without physical argumentation, however, resulting in a form expected by
Drew and Lahey [47]. This expression vanishes for stagnant fluids, while
at the same time preserving hyperbolicity at least in presence of phase
slip [48].

• surface tension,
manifesting in an interfacial force balance with a force contribution due
to interfacial averaged pressure (Young-Laplace effect).

Since closure relations obviously are related to an interfacial force density
due to surface tension, that is assumed to be dominated by unresolved
(microscopic/local) curvature, i.e., the inner morphological structure of
the interfacial transition region, it is advisable to revisit the underlying
assumption of an isotropic interfacial topology. According to equation
8.40 the interfacial averaged curvature ªκI is decomposed into a resolved
mesoscopic contribution and a dominant unresolved microscopic contribu-
tion dΣ/dαϕ, where the interfacial area density Σ is only allowed to vary
across the interfacial transition region, that is in the direction of ªnI –
perpendicular to contours of constant αϕ.

Closure models are needed for the terms Mϕ,σ and Mφ,σ as well as for Mσ.
Considering the adoption of this assumption in the context of interfacial
surface tension modeling it is proposed that

Mϕ,σ = αϕ · 4αϕαφMσ and Mφ,σ = αφ · 4αϕαφMσ, (8.56)
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where 4αϕαφ represents a symmetric regularization term. The pre-factor
is the contribution of the interfacial force density due to surface tension
to the momentum equation of a particular phase localized in a part of
the interfacial transition region that features the inner curvature: on the
adjacent sites of the interface from the respective "phases’ view point".

It remains to formulate a closure relation for Mσ defined as σ¬κInIΣ,
equation 8.33: This will be decomposed into an interfacial average and an
interfacial fluctuating contribution:

Mσ = σ¬κInIΣ = σ

(ªκI ªnI +
¬
κ]In

]
I

)
Σ. (8.57)

Using equation equation 8.9 (substituting Φ = 1) and 8.40, and underlying
an isotropic interfacial morphology, equation 8.57 can be rewritten as

⇒ Mσ = −σ
(
−∇

2αϕ
|∇αϕ|

+ dΣ

dαϕ

)
∇αϕ + σ

¬
κ]In

]
IΣ. (8.58)

Equation 8.40, dΣ/dαϕ states the contribution of the microscopic unre-
solved curvature stemming from fluctuations inside the interfacial transi-
tion region. Thus, it seems rational to assume the same form for

¬
κ]In

]
IΣ.

Consequently, we propose:

¬
κ]In

]
IΣ ∼

dΣ

dαϕ
∇αϕ. (8.59)

An algebraic expression for the interfacial area density Σ is needed. For
this purpose, it is suggested to adopt the following phase-invariant alge-
braic model formulation for Σ:

Σ = 4αϕαφΣ0, (8.60)

where Σ0 depends on the presumed unresolved interfacial morphology,
assumed to be constant. Using the equations 8.38 and incorporating the
proportionality factor (q.v. relation 8.59) into Σ0 (equation 8.60), we can
rewrite equation 8.57:

Mσ =σªκI ªnIΣ + σ
dΣ

dαϕ
∇αϕ

≈σ
(
∇•
(
∇αϕ
|∇αϕ|

)
+ 4Σ0 (1− 2αϕ)

)
∇αϕ. (8.61)

The model assumption according to equation 8.59 is rational, since
dΣ/dαϕ is identified to provide the contribution from the microscopic
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unresolved curvature and ¬κ]In]I Σ is interpreted as the mean effect of this
microscopic unresolved curvature. Thus,

Mϕ,σ ≈ αϕ · 4αϕαφ σ
(
∇•
(
∇αϕ
|∇αϕ|

)
+ 4Σ0 (1− 2αϕ)

)
∇αϕ,

Mφ,σ ≈ αφ · 4αϕαφ σ
(
∇•
(
∇αϕ
|∇αϕ|

)
+ 4Σ0 (1− 2αϕ)

)
∇αϕ. (8.62)

Taking advantage of the product rule, the term ∇ (αϕ pϕ) in the conditional
volume-averaged momentum equation 8.29 is expanded towards αϕ∇ pϕ +
pϕ∇αϕ. This allow us to isolate a net interfacial pressure force density
Mϕ,p ≡

(©p ϕ − pϕ
)
∇αϕ, accounting for the pressure difference ©p ϕ − pϕ due

to phase slip. For segregated flow from equation 8.55 it follows

Mϕ,p = − αϕαφ ρ
ϕ ρφ

αϕ ρφ + αφ ρϕ
|Uφ − Uϕ|2 ∇αϕ. (8.63)

The final form of the conditional volume-averaged momentum equation reads:
∂αϕ Uϕ

∂t
+∇•

(
αϕ Uϕ Uϕ

)
=− αϕ∇ pϕ

ρϕ
− ∇• (αϕ τϕ)

ρϕ

+ αϕg + Mϕ,h + Mϕ,p + Mϕ,σ

ρϕ
. (8.64)

It is left to consider the unbalanced interfacial pressure and shear stress contri-
bution, Mϕ,h.

Unbalanced interfacial pressure and shear stress contribution. In the concept of par-
tially penetrating continua Mϕ,h in the interfacial transition region is identified
as the interfacial force density due to unbalanced pressure and viscous stresses,
which manifests itself in a dissipative drag due to interfacial friction in the
presence of phase slip.

With ©µ ϕ = µϕ the following relation is proposed:

Mϕ,h ∼
Σ

δ
µϕ
(

Uϕ − ©Uϕ)
, (8.65)

where Σ denotes the interfacial area density that varies across the interfacial
transition region of width δ.

Rewriting relation 8.65 by use of equation 8.44 (model for ©Uϕ
), 8.37 (model

for Σ), and equation 8.50 (model for δ) yields:

Mϕ,h ∼
|∇αϕ|
δ

µϕ µφ

µϕ + µφ

(
Uϕ − Uφ

)
, (8.66)
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which is further written into a more exploitable form:

Mϕ,h = λ (ReI , πµ) |∇αϕ|
δ

µϕ µφ

µϕ + µφ

(
Uϕ − Uφ

)
, (8.67)

where the proportionality factor has been denoted as λ (ReI , πµ), representing
a dimensionless friction coefficient which holds (unbalanced) tangential inertia
and tangential shear contributions:

λ (ReI , πµ) = mReI + nπµ, (8.68)

where the parameters m and n have to be chosen appropriately; m = 0.1 . . . 1.5
and n ≈ 8 have proven adequate. From this, it is evident that the dissipative
drag is a function of the relative phase velocity, that is the averaged slip velocity
between the phases. Note that the interfacial Reynolds number is defined as

ReI ≡
ρ δ |Uϕ − Uφ|

αϕαφ µϕ µφ/(µϕ + µφ)
. (8.69)

For the dimensionless group πµ (viscous shear contribution), it is suggested:

πµ ≡
αϕαφ µ

ϕ µφ/
(
αφ µ

ϕ + αϕ µ
φ
)

µϕ µφ/
(
µϕ + µφ

) . (8.70)

In the view of the underlying microscopic shear flow scenario for closure – the
numerator of the above expression has been chosen as the harmonic mean of
the phase viscosities weighted with the respective volumetric phase fractions.
This in fact is the correct viscosity value when the flow velocity is parallel to the
interface. For the denominator, the corresponding local instantaneous analogue
at the interface (Iϕ = Iφ = 0.5) has been chosen as dimensionless viscosity term.
Note that this term is also present within our approach as given by equation
8.67.

Self-interaction Terms – τϕ and τφ

A closure model for the conditional volume-averaged (viscous) shear stress tensor τϕ
is obtained by examining the conditional volume-averaged constitutive equation of
the local shear stress tensor. For incompressible Newtonian fluids it is:

τ = −µ
(
∇U + (∇U)T

)
. (8.71)

Conditional volume-averaging of equation 8.71 yields for phase ϕ:

αϕ τ
ϕ = − Iϕµ

(
∇U + (∇U)T

)
= − Iϕµ∇U − Iϕµ∇UT

= −∇
(
αϕ µUϕ

)
− ³¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹µ(µU) nI

ϕ
Σ −∇

(
αϕ µUϕ

)T
− ³¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹µnI (µU)

ϕ
Σ. (8.72)
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Thus, it follows with the decomposition for the local-instantaneous velocity into an
interfacial averaged and an interface fluctuating velocity and using the product rule

αϕ τ
ϕ =− µϕ∇

(
αϕ Uϕ

)
− µϕ∇

(
αϕ Uϕ

)T
−
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ(
µ
(©Uϕ

+ U]
I,ϕ

))
nI

ϕ

Σ −
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
nI
(
µ
(©Uϕ

+ U]
I,ϕ

))ϕ
Σ, (8.73)

For the first term it is
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ(
µ
(©Uϕ

+ U]
I,ϕ

))
nI

ϕ

Σ =
­
µ
©Uϕ

ϕ

ªnIΣ +
³¹¹¹¹·¹¹¹¹¹µ
µU]

I,ϕ

ϕ

´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
=0

ªnIΣ

= −©µ ϕ©Uϕ
∇αϕ. (8.74)

Finally:

αϕ τ
ϕ =− αϕ µϕ∇Uϕ − µϕ Uϕ∇αϕ − αϕ µϕ∇UϕT −∇αϕ µϕ Uϕ

+ ©µ ϕ©Uϕ
∇αϕ + ©µ ϕ∇αϕ

©Uϕ

⇒ αϕ τ
ϕ =−

(
αϕ µ

ϕ
(
∇Uϕ +∇UϕT

))
−
((
µϕ Uϕ − ©µ ϕ©Uϕ)

∇αϕ +∇αϕ
(
µϕ Uϕ − ©µ ϕ©Uϕ))

.

(8.75)

By substituting closure models for ©Uϕ
and with ©µ ϕ = µϕ, the conditional volume-

averaged shear stress tensor τϕ might be expressed in terms of averaged flow quan-
tities for different flow types.

Substituting equation 8.44 for ©Uϕ
into equation 8.75 yields

αϕ τ
ϕ =−

(
αϕ µ

ϕ
(
∇Uϕ +∇UϕT

))
− µϕ µφ

µϕ + µφ

((
Uϕ − Uφ

)
∇αϕ +∇αϕ

(
Uϕ − Uφ

))
. (8.76)

The first term holds the viscous stress contributions of the phase ϕ to itself, and
the second accounts for phase slip, inducing viscous stress in phase ϕ due to relative
motion with respect to phase φ. Note that ∇αϕ ensures the latter contribution to be
non-zero only inside the interfacial region.

It is interesting to note that Sun and Beckermann [49] found a similar term. However,
it seems neither rational nor plausible that their phase slip contribution is propor-
tional to the phase fraction αϕ, since strictly decomposing into terms ∼ αϕ (i.e.,
bulk contribution) and terms ∼ ∇αϕ (i.e., a interfacial contribution) – as shown
in equation 8.75 and its derivation – does not result in such an outcome. Drew
and Passman [47] also proposed another closure for τϕ. However, their approach
is case-sensitive, as it holds several effective viscosities for different flow scenarios,
which is rather ponderous and avoided by the above approach.
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Figure 8.7: Stratified two-phase shear flow.

8.4. Simulation Results

The novel Eulerian-Eulerian multi-scale two-phase model will be validated for segre-
gated flows against different pseudo-2D test cases at varying spatial resolutions. In
doing so, the quality of the sub-grid closure models shall be assessed, as the role of
modeled terms will become predominant with coarser meshes.

The implementation has been done in OpenFOAM v. 1.5-ext, a general purpose Open
Source CFD tool providing a comprehensive C++ library for all kind of problems in
computational continuum mechanics (CCM), [50,51].

8.4.1. Tangential Interfacial Coupling – Stratified Two-Phase Shear
Flow

A stratified flow scenario is examined in order to assess the tangential interfacial
coupling. We shall examine the velocity profiles within both fluids that constitute
the stratified two-phase flow. Due to continuity of shear stresses across the interface
and different viscosities of the two fluids, the velocity profile will exhibit a sharp bend
at the interface.

The flow domain under consideration is shown in figure 8.7. Two fluids are encom-
passed by two horizontal plates of length L at a distance H. The interface is at
height d and parallel to the walls. For this simple duct flow we employ constant
pressure boundary conditions [52], i.e., the pressure drop is fixed and given by
∆p = p(x = L) − p(x = 0). No-slip boundary conditions for the velocities are
imposed on the walls and zero-gradient boundary conditions on the left side (inlet)
and the right side (outlet). For the pressure, zero gradient boundary conditions are
imposed on the walls, while fixed values are imposed on the inlet (p(x = 0)) and
outlet (p(x = L)), respectively.
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The material properties of the two-phase system are ρ1 = 1 kg m−3, ρ2 = 1 kg m−3,
η1 = 1.85 · 10−5 Pa s and η2 = 5 · 10−4 Pa s. The buoyancy and surface tension
force have been neglected. The channel’s length and height are L = 0.04 m and
H = 0.02 m with the interface being positioned at d = 0.01 m. The pressure difference
is ∆p = 0.0021 Pa. The grid resolution in y-direction was varied from 15 over 20 to
25 cells. Model parameters for the unbalanced interfacial pressure and shear stress
contributions have been set to n = 0.13, n = 0.27 and n = 0.50 for the coarse, mid
and fine spatial resolution, respectively. The parameter m has been set constant:
m = 8.5.

This test case is useful, since there is an analytical solution, derived in [53] and
recapitulated in 8.A:

Ux,1(y) = 1
2η1

∂p

∂x

(
y2 − H2 + d2 (η2/η1 − 1)

H + d (η2/η1 − 1) y

)
, (8.77)

Ux,2(y) = 1
2η2

∂p

∂x

(
y2 − H2 + d2 (η2/η1 − 1)

H + d (η2/η1 − 1) y + (η2/η1 − 1)
(
Hd2 −H2d

)
H + d (η2/η1 − 1)

)
.

(8.78)

Results of CFD simulations are shown in figure 8.8. In order to examine the quality
of the results we perform a quantitative comparison of the simulation results with
the corresponding reference solution as given by the equations 8.77 and 8.78. For
this purpose, a percentage normalized error (PNE) is defined according to

PNE ≡ maxNk=1


∣∣∣φk − φrefk ∣∣∣
max |φref|

 , (8.79)

where φk denotes the respective quantity under consideration, c.q. Ux. In doing
so, we obtain a PNE of 2.69%, 1.22% and 1.69% for the coarse, intermediate and
fine mesh resolution, respectively. Evidently, the PNE is higher for the finest spatial
resolution than it is for both the intermediate and coarse one. An inherent error
might arise from the fact that the interface position can only be approximated by an
iso-surface, which is neither justified per se within an conditional volume-averaged
framework nor exact in terms of phase volume conservation. Moreover, since the
presented model framework is new, model uncertainties still have to be addressed,
which is left for forthcoming studies. Using the standard solver interFoam as provided
in OpenFOAM results in a PNE of 17.5% for a spatial resolution of 20 cells over
the channel’s height, for instance. Hence, our Eulerian-Eulerian multi-scale two-
phase model HIRES-TFM has been found to outperform the state-of-the-art interface
capturing model.
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(a) coarse spatial resolution (60 x 15 mesh
cells).
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(b) intermediate spatial resolution
(80 x 20 mesh cells).

0.00 1.00 2.00 3.00 5.00
0.00

0.50

1.00

2.00

cm
s

cm

horizontal velocity Ux

ch
an

ne
lh

ei
gh

t
h

Analytical reference solution
Numerical Solution (hiresFoam)

(c) fine spatial resolution (100 x 25 cells).

Figure 8.8: Velocity profile over channel height for stratified two-phase
shear flow scenario.
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Figure 8.9: Oscillating viscous droplet.

8.4.2. Normal Interfacial Coupling – Oscillating Viscous Cylinder

The second test case deals with the coupling in interfacial normal direction. Consider
an oscillating droplet in two dimensions under zero-gravity conditions. The oscillation
is caused by surface tension and induced by an initial perturbation of the droplet
shape: a ellipsoidal droplet. Due to its viscosity, the droplet will experience a damped
oscillatory movement. The interplay of pressure and surface tension, and the influence
of viscosity on the interface dynamics state the subject of the present test case.

The flow domain is shown in figure 8.9. Material properties of the two-phase
system are ρ1 = 797.88 kg m−3, ρ2 = 1.1768 kg m−3, ν1 = 1.346 · 10−5 m2 s−1 and
ν2 = 1.581 · 10−5 m2 s−1, corresponding to a methanol droplet (phase 1) in air
(phase 2). The droplet with r = 8.18535 mm equilibrium radius and a0 = 1.81465 mm
initial distortion (corresponding to an initial major axis of l1 = 5 · 10−3 m and an
aspect ratio equal to 0.667) has been placed into a squared cavity of L = 75 mm
edge length at zero-gravity condition. Note that the viscosity of the liquid phase has
been increased artificially in order to pronounce viscous damping. Surface tension
coefficient has been set to σ = 0.02361 kg s−2. Numerical simulations have been
performed for different spatial resolution, i.e., mesh densities of 48 x 48, 64 x 64 and
80 x 80 cells. In the remainder we will refer to these mesh resolutions as coarse,
intermediate and fine. Model parameters for the unbalanced interfacial pressure and
shear stress contributions have been set to n = 1.60, n = 0.60 and n = 0.33 for
the coarse, intermediate and fine spatial resolution, respectively. The parameter m
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has been set constant as for the previous case: m = 8.5. For the velocities, free-
slip boundary conditions are imposed on the walls, while a total pressure boundary
condition is utilized for the pressure.

Let r and a0 be the radius of the spherical droplet in equilibrium and the magnitude
of the initial distortion from this shape at the pole interface position as illustrated in
figure 8.9. The oscillation frequency is given by [54,55]

ωn =
√

n(n+ 1)(n+ 2)σ
((n+ 1)ρl + nρg) r3 , (8.80)

with the corresponding oscillation time period

τn = 2π
ωn
, (8.81)

where n denotes the mode of oscillation. Here, the primary mode (n = 2) applies.

Neglecting the viscosity of the ambient gas phase the viscous damping or decay factor
might be written as reciprocal of the viscous damping time constant

βν = 1/τν ≡ (n− 1)(2n+ 1) νl
r2 . (8.82)

A damped oscillatory motion for the temporal evolution of the envelope e(t) of the
amplitude distortion a(t) reads

e(t) = ± a0e
−t/τν , (8.83)

which can be used for a quantitative assessment of numerical results.

Comparing the oscillation time period and viscous damping behavior with theoretical
values according to equations 8.81 and 8.83 indicates a acceptable agreement as
illustrated in figure 8.10. Approximating the interface position by an iso-surface at
value αϕ = 0.5, the normalized errors according to equation 8.79 for the maxima in
the distortion amplitude and corresponding envelope values are 7.56%, 5.07% and
9.75% for the coarse, intermediate and fine resolution. The higher discrepancy for
fine mesh resolution shows clearly that the presented models for the surface tension
force density needs to be considered as a model framework; however, submodels –
such as the algebraic model for the interfacial area density Σ – are subject to further
research. This can be also seen from the deviation at early stages of the droplet’s
oscillatory movement on fine meshes. However, both the oscillation time period and
the viscous damping behavior has been shown to reasonably match the expected
values. Note that an inherent error might arise from the fact that the interface
position can only be approximated by an iso-surface, which is neither justified per se
within a conditional volume-averaged framework nor exact in terms of phase volume
conservation.
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(a) coarse spatial resolution (48 x 48 cells).
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(b) intermediate spatial resolution (64 x 64
cells).
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(c) fine spatial resolution (80 x 80 cells).

Figure 8.10: Temporal evolution of distortion amplitude for an
oscillating viscous droplet.
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Figure 8.11: Dambreak with obstacle.

8.4.3. Inertia-dominated – Dambreak with Obstacle

Eventually, we consider a rather classical yet demanding test case for two-phase flow
validation which combines the subject of interest of the previous ones: it involves
both tangential and normal interfacial coupling, however, pronouncing the influence
of inertia on interfacial dynamics, while additionally the flow morphology is subject to
cross changes. We consider a water column, which initially is held back by a barrier.
The initial setup and the geometry is shown in figure 8.11. Suddenly removing this
barrier will cause the water to collapse, i.e., flow to the right, hitting the obstacle,
flowing over it and finally hitting the opposite wall.

Numerical simulations have been performed at different spatial resolutions, that is
for meshes of 23 x 23, 46 x 46 and 69 x 69 cells. We consider the air-water system
with the following material properties: ρ1 = 1.0 · 103 kg m−3, ρ2 = 1.0 kg m−3,
ν1 = 1.0 · 10−6 m2 s−1 and ν2 = 1.48 · 10−5 m2 s−1. As illustrated in figure 8.11
the flow domain is bounded by walls except at its top boundary, where it is free
to the atmosphere. At walls a Neumann boundary condition is imposed for the
pressure, evaluating the normal pressure gradient from the local density gradient.
As for the wall velocities, no-slip Dirichlet boundary conditions are imposed. At the
top boundary of the flow domain both inflow and outflow is permitted – according
to the internal flow within its interior. This is accomplished by a combination of
boundary conditions for pressure and velocities in a way maintaining stability: for
the velocities, a zero-gradient Neumann boundary condition is adopted, except where
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there is an inflow, in which case the tangential velocity components are set to zero.
The pressure is evaluated according to a fixed-value Dirichlet condition, which adjusts
the pressure according to the local mixture velocity and a fixed total pressure. For
turbulence modeling a simple k − ε model has been adopted.

A comparison with experimental results obtained by Koshizuka et al. [56] shows
a good agreement – both qualitatively (figures 8.12 and 8.13) and quantitatively
(figure 8.14). The water creates a complicated flow structure after subsequently
hitting the obstacle and the opposite wall. Eventually, several pockets of captured
air are formed, whereupon the water falls onto the floor letting the confined air escape
upwards. During the entire process small droplets and bubbles are entrained from the
continuous liquid phase and the continuous gas phase, respectively. However, since
the applied model only involves closure terms for the segregated flow type, droplets
or bubbles are not captured adequately. Only the main dynamics of the resolved
interfacial structures of segregated type is captured. A generalization towards a full
multi-scale two-phase flow model that is involving both dispersed flow types and
segregated flow types will be presented in a forthcoming publication.

8.5. Conclusions & Outlook

A general multi-scale two-phase flow model framework is presented, that not only
inherently encompasses both interfacial scale resolving and interfacial scale averaging
approaches, but also consistently involves intermediate scale situations. By condi-
tional volume-averaging the two-phase flow features are divided into an unresolved
(averaged) and a resolved portion, in the same manner as this is accomplished by
spatial filtering – known from single phase turbulence modeling when underlying the
Large Eddy Simulation (LES) methodology. It is shown that the terms accounting
for the unresolved portions can be grouped to additional terms within the set of
governing equations. For closure these terms are to be interpreted according to
the specific flow type under consideration and the averaging procedure applied. In
doing so, two-phase flows of both dispersed and segregated type can be captured in
one generalized Eulerian-Eulerian multi-scale two-phase model framework. This is
accomplished by means of two conceptual approaches that enable us to describe
transitions of flow regimes in a scale-consistent manner, namely the well-known
’concept of interpenetrating continua’ and the novel ’concept of partially penetrating
continua’.

This work focuses on modeling of two-phase systems of segregated flow type, present-
ing the development and validation of the concept of partially penetrating continua.
One outstanding benefit of this practice is that one general form of the governing
equation is retained, that is independent on the nature of the underlying two-phase
flow type, while exhibiting the same basic structure as found for single-phase flows.
This enables us to reuse numerical methodologies that originally have been developed
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(a) hiresFoam (t =0.2 s). (b) experiment (t =0.2 s).

(c) hiresFoam (t =0.4 s). (d) experiment (t =0.4 s).

Figure 8.12: Qualitative comparison of numerical results with
dambreak experiment – left: numerical results showing the
phase fraction distribution (hiresFoam, 46 x 46 cells), right:
high-speed imaging (experiment, Koshizuka et al. [56]).
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(a) 69 x 69 cells. (b) 46 x 46 cells.

(c) 23 x 23 cells.

Figure 8.13: Qualitative comparison of
numerical results showing the
phase fraction at different spatial
resolutions for the dambreak
scenario with obstacle at t =0.4 s.
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Figure 8.14: Quantitative assessment of numerical results showing the
interface position during a dambreak scenario with
obstacle.
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for single-phase flows for several broad classes of problems. Due to averaging the
resolved portions of the two-phase flow are continuous and smooth (on the resolved
scale), resulting in a robust and consistent representation of interfacial structures
within the Eulerian framework. Another noteworthy remark needs to be made about
the expectations: the presented two-phase model framework potentially opens up
new avenues towards the simulation of turbulent two-phase flow systems due to the
conceptual proximity to the well-established LES method.

The present model has been tested at different spatial resolutions considering bench-
marks for two-phase flows of segregated type, in order to assess the quality of the
corresponding closure. Two basic test cases have been examined covering the valida-
tion of coupling of phase momenta in tangential and normal direction to the interface
– namely the stratified shear flow and the oscillating viscous cylinder. For each case,
the numerical results are compared to analytical reference solutions. Good agreement
is observed, which provides a solid base for assessing the potential of the model. The
model framework is expected to be (at least more) general and applicable to a broad
range of fundamental two-phase flow types. For this reason, another standard test
case, that is a dambreak with obstacle, has been examined, in order to assess the
model’s reliability when being adopted to a two-phase flow with a greater scope of
complexity than exposed by the above basic test cases. Owing to the complexity,
there is no analytical solution to compare with and the comparison now needs to be
based on experimental results. However, still a good agreement is observed.

The applicability of the Eulerian-Eulerian two-fluid approach has been found to be
solely limited by its ability to accurately capture the characteristic features of the
particular flow type under consideration. However, this eventually depends on the
physical interpretation of closure terms, representing portions of the flow type that
have become unresolved due to averaging. On the basis of the presented model
framework, it is possible to realize the closure modeling for different flow types in
one generalized, consistent and physically meaningful manner. In effect, such a model
enables us to deal with two-phase flows of both dispersed type and segregated type,
which is to be further developed in future publications.
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Appendix

8.A. Derivation of Analytical Validation Base

Stratified Two-Phase Shear Flow

The two-dimensional, incompressible continuity and momentum balance in x- and
y-direction read:

∂Ux

∂x
+ ∂Uy

∂y
= 0 (8.84)

∂Ux

∂t
+ Ux

∂Ux

∂x
+ Uy

∂Ux

∂y
= −1

ρ

∂p

∂x
+ η

ρ

(
∂2Ux

∂x2 + ∂2Ux

∂y2

)
(8.85)

∂Uy

∂t
+ Ux

∂Uy

∂x
+ Uy

∂Uy

∂y
= −1

ρ

∂p

∂y
+ η

ρ

(
∂2Uy

∂x2 + ∂2Uy

∂y2

)
(8.86)

The flow under consideration is an incompressible, two-dimensional, steady-state,
developed channel flow (Poiseuille flow). Furthermore, it holds that Uy = 0, resulting
in ∂Uy

∂x = 0 and ∂Uy

∂y = 0. From continuity it follows that ∂Ux
∂x = 0, so that the only

non-zero component of the velocity is Ux 6= 0 and the only nonzero component of
the velocity-gradient is ∂Ux

∂y 6= 0. Therefore, the momentum balances reduce to:

η

(
∂2Ux

∂y2

)
= ∂p

∂x
and (8.87)

∂p

∂y
= 0. (8.88)

From Eq. 8.88 it follows, that the pressure is only a function of the coordinate x:
p = p (x). Considering Eq. 8.87, the l.h.s. is only a function of y-coordinate, while
the right hand side is only a function of x-coordinate. Consequently, Eq. 8.87 can
only hold if both sides are constants:

η

(
∂2Ux

∂y2

)
= ∂p

∂x
= C. (8.89)

Integration results in:

Ux(y) = 1
2η
∂p

∂x
y2 + Cay + Cb. (8.90)
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Considering two fluids being separated by the horizontal interface at height y = d,
as depicted in Fig. 8.7, results in:

Ux,1(y) = 1
2η1

∂p

∂x
y2 + C1y + C2, (8.91)

Ux,2(y) = 1
2η2

∂p

∂x
y2 + C3y + C4. (8.92)

The boundary conditions to determine the four constants are:

Ux,1(y = 0) = 0, (8.93)
Ux,2(y = H) = 0, (8.94)
Ux,1(y = d) = Ux,2(y = d) and (8.95)

η1
∂Ux,1
∂y
|y=d = η2

∂Ux,2
∂y
|y=d, (8.96)

where the latter equation 8.96 follows from the condition τ1|y=d = τ2|y=d at the
interface. This results in:

C1 =
− 1

2η1
∂p
∂x

(
H2 + d2

(
η2
η1
− 1

))
H + d

(
η2
η1
− 1

) , (8.97)

C2 = 0, (8.98)

C3 =
− 1

2η2
∂p
∂x

(
H2 + d2

(
η2
η1
− 1

))
H + d

(
η2
η1
− 1

) and (8.99)

C4 =
1

2η2
∂p
∂x

(
η2
η1
− 1

) (
Hd2 −H2d

)
H + d

(
η2
η1
− 1

) . (8.100)

267



Bibliography

References

[1] M. Wörner, W. Sabisch, G. Grötzbach, and D. G. Cacuci. Volume-averaged conservation
equations for volume-of-fluid interface tracking. In 4th Int. Conf. on Multiphase Flow,
ICMF 2001, New Orleans, Louisiana, U.S.A, May 27 – June 1 2001. Michaelides, E. E.
CD-ROM. 229

[2] W. Sabisch. Dreidimensionale numerische Simulation der Dynamik von aufsteigenden
Einzelblasen und Blasenschwärmen mit einer Volume-of-Fluid-Methode. PhD thesis,
Universität Karlsruhe, 2000. 229

[3] Y. Sun and C. Beckermann. Diffuse interface modeling of two-phase flows based on
averaging: mass and momentum equations. Physica D: Nonlin. Phenomena, 198(3-
4):281–308, 2004. 230

[4] Ronald P. Fedkiw, Tariq Aslam, Barry Merriman, and Stanley Osher. A non-oscillatory
eulerian approach to interfaces in multimaterial flows (the ghost fluid method). J.
Comput. Phys., 152:457–492, July 1999. 230

[5] S. O. Unverdi and G. Tryggvason. A front tracking method for viscous incompressible
flows. J. Comp. Phys., 100:25–37, 1992. 230

[6] S. O. Unverdi and G. Tryggvason. Computations of multi-fluid flows. Physica D: Nonlin.
Phenomena, 60:70–83, 1992. 230

[7] C. W. Hirt and B. D. Nichols. Volume Of Fluid (VOF) method for the dynamics of free
boundaries. J. Comput. Phys., 39(1):201–225, 1981. 230, 241

[8] F. H. Harlow and J. E. Welch. Numerical calculation of time-dependent viscous in-
compressible flow of fluid with free surface. Phys. Fluids, 8(12):2182–2189, 1965. 230,
241

[9] J. A. Sethian. Level Set Mehods: Evolving interfaces in geometry, Fluid mechanics,
computer vision, and material science. Cambridge Univ. Press, 1996. 230, 241

[10] G. Černe. Two-Fluid Flow Simulation with the Coupling of Volume-Of-Fluid Model and
Two-Fluid Model. PhD thesis, University of Ljubljana, Faculty of Mathematics and
Physics (Department of Physics), 2001. 230

[11] G. Černe, S. Petelin, and I. Tiselj. Upgrade of the VOF method for the simulation of the
dispersed flow. In ASME Fluids Eng. Division Summer Meeting, Boston, Massachusetts,
2000. 230

[12] G. Černe, S. Petelin, and I. Tiselj. Coupling of the interface tracking and the two-
fluid models for the simulation of incompressible two-phase flow. J. Comput. Phys.,
171(2):776–804, 2001. 230

[13] G. Černe, S. Petelin, and I. Tiselj. Numerical errors of the volume-of-fluid interface
tracking algorithm. Int. J. Numer. Meth. Fluids, 38:329–350, 2002. 230

[14] A. Tomiyama and N. Shimada. (N+2)-field modeling for bubbly flow simulation. Comp.
Fluid Dyn. J., 9(4):418–426, 2001. 230

268



Bibliography

[15] A. Tomiyama and N. Shimada. A numerical method for bubbly flow simulation based
on a multi-fluid model. J. of Pressure Vessel Technology, 123(4):510–516, 2001. 230

[16] A. Tomiyama, N. Shimada, I. Zun, T. Noguchi, and T. Yakawa. NP2-3D: An (N+2)-
field model for computing mesoscale and macroscale multiphase flows. In ASME
FEDSM2001-18191, 2001. 230

[17] A. Tomiyama, N. Shimada, and H. Asano. Application of number density transport
equation for the recovery of consistency in multi-fluid model. In 4th ASMER-JSME
Joint Fluids Eng. Conf. (CD-ROM), pages 1–7, 2003. FEDSM’03 No.45168. 230

[18] A. Tomiyama, K. Sakoda, K. Hayashi, A. Sou, N. Shimada, and S. Hosokawa. Modeling
and hybrid simulation of bubbly flow. In Japan-US Sem. on Two-Phase Flow Dynamics,
December 6-11 2004. 230

[19] A. Tomiyama, K. Sakoda, K. Hayashi, A. Sou, N. Shimada, and S. Hosokawa. Modeling
and hybrid simulation of bubbly flow. Multiphase. Sci. Tech., 18(1):73–110, 2006. 230

[20] A. Alajbegovic and J. Han. Simulation of multiphase flows in complex geometry using a
hybrid method combining the multi-fluid and the Volume-of-Fluid (VOF) approaches. In
ASME Joint U.S.-European Fluids Eng. Conf. (Fluids2002), pages 887–892, Montreal,
Quebec, Canada, July 14-18 2002. 230

[21] H. Yoshida, A. Ohnuki, K. Takase, M. Kureta, H. Akimoto, H. Okada, and K. Ya-
mamoto. Development of mechanistic boiling transition model in rod bundles. In 11th
Int. Conf. Nucl. Eng., April 20-23 2003. ICONE-11-36097. 230

[22] H. Yoshida, H. Tamai, K. Takase, T. Nagayoshi, and H. Akimoto. Development
of predictable technology for thermal/hydraulic performance of reduced-moderation
water reactors (3) – Current status of development of three-dimensional two-phase flow
simulation method. In Int. Congr. on Adv. Nucl. Power Plants - ICAPP 2004, 2004.
230

[23] H. Yoshida, A. Ohnuki, T. Misawa, K. Takase, and H. Akimoto. Development of
analytical procedures on two-phase flow in tight-lattice fuel bundles for innovative water
reactor for flexible fuel cycle (FLWR). In Int. Congr. Adv. Nucl. Power Plants - ICAPP
2006, pages 1593–1600. American Nuclear Society, 555 North Kensington Avenue, La
Grange Park, IL 60526 (United States), American Nuclear Society - ANS, La Grange
Park (United States), 2006. 230

[24] H. Yoshida. Draft Report – Development of analytical procedures on two-phase flow
in tight-lattice fuel bundles for innovative water reactor for flexible fuel cycle (FLWR).
Personal Communication, July 2007. 230

[25] A. Minato, K. Takamori, and N. Ishida. An extended two-fluid model for interface
behavior in gas-liquid two-phase flow. In 8th Int. Conf. Nucl. Eng., ICONE 8, volume 6
of Part A, pages 27–35, April 2-6 2000. 230

[26] A. Minato, T. Nagayoshi, M. Misawa, A. Suzuki, H. Ninokato, and S. Koshizuka.
Numerical simulation method of complex 3D gas-liquid two-phase flow. In 5th Int.
Conf. Multiphase Flow, ICMF 2004, pages 1–11, May 30 - June 4 2004. 230

269



Bibliography

[27] A. Minato, T. Nagayoshi, and K. Takamori. Numerical simulation of gas-liquid two-
phase flow in siphon outlets of pumping plants. available online at http://www.
hitachi-pt.com/products/si/pump/pdf/pump_04.pdf, January 2008. 230

[28] A. Minato, N. Nakajima, and T. Nagahara. Simulation of two-phase flow in pumping
stations. In Advances in the Modeling Methodologies of Two-Phase Flows, 2004. 230

[29] A. Minato, N. Nakajima, and T. Nagahara. Simulation of two-phase flow in pumping
stations. La Houille Blaunche, 1:59–64, 2006. 230

[30] A. Minato, N. Nakajima, T. Nagahara, and K. Kariya. Three-dimensional two-phase flow
simulation of siphon self-priming in pumping stations. In 23rd IAHR Symp. Hydraulic
Machinery and Systems, pages 1–6, 2006. 230

[31] T. Nagayoshi, A. Minato, M. Misawa, A. Suzuki, M. Kuroda, and N. Ichikawa. Simu-
lation of multi-dimensional heterogeneous and intermittent two-phase flow by using an
extended Two-Fluid Model. J. Nucl. Sci. Technol., 40(10):827–833, 2003. 230

[32] L. Štrubelj. Numerical Simulations of Stratified Two-Phase Flows with Two-Fluid Model
and Interface Sharpening. PhD thesis, University of Ljubljana, Faculty of Mathematics
and Physics (Department of Physics), 2009. 230

[33] L. Štrubelj, I. Tiselj, and B. Mavko. Simulations of free surface flows with implemen-
tation of surface tension and interface sharpening in the two-fluid model. Int. J. Heat
Fluid Flow, 30(4):741–750, 2009. 230

[34] C. Morel. Modeling approaches for strongly non-homogeneous two-phase flows. Nucl.
Eng. Des., 237(11):1107–1127, 2007. 230

[35] M. Ishii. Two-Fluid Model for two-phase flow. Multiphase. Sci. Tech., 5(1-4):1–63, 1990.
231, 241

[36] H. G. Weller. The Development of a New Flame Area Combustion Model Using
Conditional Averaging. Technical report, Thermo-Fluids Section Report TF 9307,
Imperial College of Science, Technology and Medicine, 1993. 235, 236

[37] H. G. Weller. Derivation, Modelling and Solution of the Conditionally Averaged Two-
Phase Flow Equations. Technical report, OpenCFD Limited, 2005. 235

[38] C. Dopazo. On conditioned averages for intermittent turbulent flows. J. Fluid Mech.,
81(03):433–438, 1977. 235

[39] A. Toutant. Physical Modelling of Interactions between Interfaces and Turbulence. PhD
thesis, CEA-Grenoble and IMF-Toulouse, 2006. 240

[40] A. Toutant, E. Labourasse, O. Lebaigue, and O. Simonin. DNS of the interaction
between a deformable buoyant bubble and a spatially decaying turbulence: A priori
tests for LES two-phase flow modelling. Comput. Fluids, 37(7):877–886, 2008. 240

[41] A. Toutant, M. Chandesris, D. Jamet, and O. Lebaigue. Jump conditions for filtered
quantities at an under-resolved discontinuous interface. Part 1: Theoretical development.
Int. J. Multiphase Flow, 35(12):1100–1118, 2009. 240

[42] A. Toutant, M. Chandesris, D. Jamet, and O. Lebaigue. Jump conditions for filtered

270

http://www.hitachi-pt.com/products/si/pump/pdf/pump_04.pdf
http://www.hitachi-pt.com/products/si/pump/pdf/pump_04.pdf


Bibliography

quantities at an under-resolved discontinuous interface. Part 2: A priori tests. Int. J.
Multiphase Flow, 35(12):1119–1129, 2009. 240

[43] Sarah Monahan. Computational Fluid Dynamics Analysis of Air-Water Bubble Columns.
PhD thesis, Iowa State University, 2007. 242

[44] Dongsheng Zhang. Eulerian Modeling of Reactive Gas-Liquid Flow in a Bubble Column.
PhD thesis, University Twente, 2007. 242

[45] J. M. Donbar, J. F. Driscoll, and C. D. Carter. Reaction zone structure in turbulent
nonpremixed jet flames. Combustion and Flame, 122:1–19, 2000. 248

[46] D. Bestion. The physical closure laws in the CATHARE code. Nucl. Eng. Des.,
124(3):229–245, 1990. 249

[47] D. A. Drew and S. L. Passman. Theory of Multicomponent Fluids. Number 135 in
Applied mathematical sciences. Springer, New York, NY [u.a.], 1999. 249, 253

[48] S. T. Munkejord. Analysis of the Two-Fluid Model and the Drift-Flux Model for Nu-
merical Calculation of Two-Phase Flow. PhD thesis, Norwegian University of Science
and Technology, 2005. 249

[49] C. Beckermann and Y. Sun. Diffuse interface modeling of two-phase flows based on
averaging: Mass and momentum equations. Physica D: Nonlinear Phenomena, 198(3-
4):281–308, 2004. 253

[50] H. G. Weller, G. Tabor, H. Jasak, and C. Fureby. A tensorial approach to computational
continuum mechanics using object orientated techniques. Comput. Phys., 12(6):620–631,
1998. 254

[51] H. Jasak, A. Jemcov, and Ž Tuković. OpenFOAM: A C++ library for complex physics
simulations. In International Workshop on Coupled Methods in Numerical Dynamics
IUC, Dubrovnik, Croatia, September, 19-21 2007. 254

[52] Henk Kaarle Versteeg and Weeratunge Malalasekera. An introduction to computational
fluid dynamics: the finite volume method. Pearson Education, January 2007. 254

[53] N. Coutris, J.M. Delhaye, and R. Nakach. Two-phase flow modelling: the closure issue
for a two-layer flow. International Journal of Multiphase Flow, 15(6):977 – 983, 1989.
255

[54] H. Lamb. Hydrodynamics. Oxford Univ. Press, Oxford, 6. ed. edition, 1932. 258

[55] A. Prosperetti. Free oscillations of drops and bubbles: the initial-value problem. J.
Fluid Mech., 100:333–347, 1980. 258

[56] S. Koshizuka, H. Tamako, and Y. Oka. A particle method for incompressible viscous
flow with fluid fragmentation. Comp. Fluid Dyn. J., 4:29–46, 1995. 261, 262

271





Closure





9
Summary & Outlook

9.1. Summary and Closing Comments

Many applications in chemical and process engineering possess two-phase flows of
different types – often involving both a continuous cascade of temporal and spatial
scales varying over orders of magnitude (multi-scale) and multiple coupled phenom-
ena (multiphysics).

The Eulerian-Eulerian two-fluid approach certainly exhibits the most promising and
developable features to treat these kinds of flows in one generalized and consistent
model framework. It is rooted in fundamental local-instantaneous conservation equa-
tions, i.e., the Navier-Stokes equations, that themselves are valid within each phase
up to the interface separating the phases. An appropriate conditional averaging pro-
cedure (based on the immersed interface concept) and subsequent closure modeling
on a sound physical basis constitute the steps of a clear and mathematical rigour
derivation procedure, the two-fluid approach relies upon. By conditional volume-
averaging, the two-phase flow features are divided into an unresolved (averaged) and
a resolved portion, in the same manner as this is accomplished by spatial filtering
– known from single phase turbulence modeling when underlying the Large Eddy
Simulation (LES) methodology.

In this work, it is shown that all model terms that account for unresolved portions
can be grouped to additional terms within the set of governing equations. For
closure these terms are to be interpreted according to the specific flow type under
consideration and the averaging procedure applied. In doing so, one general form
of the governing equations is retained, that is not depending on the nature of the
underlying two-phase flow type while exhibiting the same basic structure as found for
single-phase flows. It is on this general equation structure that numerical methods
in the field of CMFD hinge. Advantageously, this enables us to reuse numerical
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methodologies that originally have been developed for single-phase flows for several
broad classes of problems. Moreover, due to averaging the resolved portions of
the two-phase flow are found to be continuous and smooth (on the resolved scale),
inherently resulting in a robust and consistent representation of interfacial structures
within the Eulerian framework. This is independent of the flow type. However, the
physical interpretation of closure terms, and thus, their concrete forms and treatments
might change significantly for different flow types. Through the course of this study it
has become clear that applying conditional volume-averaging (adopting the immersed
interface concept) for some cases just yields well-established models, namely the
two-fluid model for dispersed two-phase flows (concept of interpenetrating continua),
while others correspond to entirely unexplored two-phases flow scenarios which yet
have not been treated with the two-fluid approach (concept of partially penetrating
continua), as for instance under-resolved free-surface flows of segregated flow type.

The applicability of the employed Eulerian two-fluid approach has been found to
be solely limited by its ability to accurately capture the characteristic features of
the particular flow type under consideration. However, this eventually depends on
the physical interpretation of closure terms, representing portions of the flow type
that have become unresolved due to averaging. On the basis of the presented model
framework, it is possible to realize the closure modeling in one generalized (common),
consistent and physical meaningful (averaged) manner.

9.2. Outlook and Future Work

Certainly, the novel field of research stating the scientific subject of this thesis has
just evolved and leaves much to be examined. In this view, further developments
should aim at

analysis and recapitulation of well-established models allowing further insights and
enabling to physical interpretations: For example, the Continuous-Surface-
Force (CSF) method of Brackbill for surface tension modeling in an Eulerian
framework, indeed relies upon the assumption that the radius of the interfacial
curvature is larger than the interfacial filter width (length scale characterizing
the averaging volume). Hence the CSF is not capable of capturing non-resolved
interfacial features being beyond the applied filter scale – in the sub-filter scale
(SFS) region. However, in this view, the application of the CSF method is not
restricted to local-instantaneous formulations being treated within an Eulerian
framework. It is rather about complementing the CSF methodology by SFS
models taking into account unresolved portions of the interfacial structure
under consideration by underlying the presented generalized model framework.
This in turn already means an extension towards multi-scale two-phase flow
scenarios, since the features have been divided into resolved and unresolved
components by use of conditional volume-averaging.
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extension and enhancement of novel model approaches that have educed from the
adoption of the model framework to flow types that have been unexplored in this
context up to now. As the consistent model framework enables us to examine
its extremes of applicability, that is the interfacial scale being fully resolved and
the interfacial scale being completely unresolved, model enhancements can be
achieved by analyzing results and comparing them with results from simulations
performed for these extremes – however, by established approaches with known
closure quality.

Furthermore, physical assumptions that have been inherently presumed when
stating the local-instantaneous conservation equations and corresponding jump
conditions should be varied in a subsequent step. For instance, the assessment
of viscosity obeying Newton’s law or the existence of a sharp interface under
surface tension might be altered in order to examine Non-Newtonian two-phase
flows or to revisit diffuse interface models being thermodynamically motivated
(e.g., phase-field methods). This certainly would reveal new insights into both
the numerical treatment and the physical significance of model approaches
being currently state-of-the-art.

Lastly, other flow variables such as energy, for instance, should be taken into
account. Along with models for mass, momentum and chemical species, which
have been presented in this thesis, reacting two-phase system could be addressed
and examined at different scales of interest – micro-, meso- and macroscale.

full multi-scale two-fluid model that is able to simultaneously capture dispersed and
segregated flow types in one flow domain (mixed flow type). The governing
equations of the multi-scale model framework, that has been developed in this
study, have one general form which is independent from the underlying two-
phase flow type. Nevertheless, model terms are to be interpreted according
to the specific flow type under consideration. However, since the model terms
are based on the same conditional averaging procedure (same spatial filter),
the treatment of mixed flow types can be accomplished in a scale-consistent
manner, which means that flow regime transitions (from dispersed to segregated
flow type, or vice versa) can be dealt with by a switch or transition factor in
front of these model terms. It is surely necessary to do further research in order
to arrive at such a flow regime discrimination practice that is both reliable and
consistent. It is the author’s belief that this has to be based upon the same
conceptual approach (immersed interface concept) and the same methodology
(conditional volume-averaging / spatial filtering) as for the underlying model
framework.
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